Question: Consider the process transfer function given in Equation 2 GP 2(10s +1) (25+1)(2s+1.5s+2.5) Explain the stability and the dynamic response characteristic of the process. If

 Consider the process transfer function given in Equation 2 GP 2(10s

Consider the process transfer function given in Equation 2 GP 2(10s +1) (25+1)(2s+1.5s+2.5) Explain the stability and the dynamic response characteristic of the process. If a cascade control is used to control the process as shown in Figure 2. Figure 2: Cascade control block diagram Apply Ziegler and Nichols tuning rules for the master controller and IMC tuning rules for the slave controller. Design G2 for P controller first (note use parameter r = 3 for. the low-pass filter), and then use that value to design Gc1 for Pl controller. The higher order transfer function can be approximated first by a FOPTD model. Consider the process transfer function given in Equation 2 GP 2(10s +1) (25+1)(2s+1.5s+2.5) Explain the stability and the dynamic response characteristic of the process. If a cascade control is used to control the process as shown in Figure 2. Figure 2: Cascade control block diagram Apply Ziegler and Nichols tuning rules for the master controller and IMC tuning rules for the slave controller. Design G2 for P controller first (note use parameter r = 3 for. the low-pass filter), and then use that value to design Gc1 for Pl controller. The higher order transfer function can be approximated first by a FOPTD model

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Chemical Engineering Questions!