Question: Does the histogram show that the sales per square foot distribution is symmetric? If the sales per square foot distribution is not symmetric, what is
Does the histogram show that the sales per square foot distribution is symmetric?
If the sales per square foot distribution is not symmetric, what is the skew?
If there are any outliers, which one(s)? What is the "SqFt" area of the outlier(s)?
Is the outlier(s) smaller or larger than the average restaurant in the data? What can you conclude from this observation?
What measure of central tendency may be more appropriate to describe "Sales/SqFt"? Why? Calculate "Annual Sales" for each restaurant. Annual Sales is the result of multiplying a restaurant's "SqFt." by "Sales/SqFt." The first value has been provided for you.
- Calculate the mean, standard deviation, skew, 5-number summary, and interquartile range (IQR) for each of the variables. The formulas and the first results have been provided for you.
- make a boxplot (sometimes referred to as a box and whisker chart) for the "Annual Sales" variable.
- make a histogram for the "Sales/SqFt" variable.
| Location number (Obs) | Square Feet | Per Person Average Spending | Sales Growth Over Previous Year (%) | Loyalty Card % of Net Sales | Annual Sales Per Sq Ft | Median Household Income (3 Miles) | Median Age (3 Miles) | % w/ Bachelor's Degree (3 Miles) | Annual Sales (in $000) |
| Obs | SqFt | Sales/Person | SalesGrowth% | LoyaltyCard% | Sales/SqFt | MedIncome | MedAge | BachDeg% | AnnualSales |
| 1 | 2354 | 6.81 | -8.31 | 2.07 | 701.97 | 45177 | 34.4 | 31 | 1652.44 |
| 2 | 2604 | 7.57 | -4.01 | 2.54 | 209.93 | 51888 | 41.2 | 20 | 546.66 |
| 3 | 2453 | 6.89 | -3.94 | 1.66 | 364.92 | 51379 | 40.3 | 24 | 895.15 |
| 4 | 2340 | 7.13 | -3.39 | 2.06 | 443.04 | 66081 | 35.4 | 29 | 1036.71 |
| 5 | 2500 | 7.04 | -3.30 | 2.48 | 399.20 | 50999 | 31.5 | 18 | 998.00 |
| 6 | 2806 | 6.93 | -1.94 | 2.96 | 264.64 | 41562 | 36.3 | 30 | 742.58 |
| 7 | 2250 | 7.11 | -0.77 | 2.28 | 571.59 | 44196 | 35.1 | 14 | 1286.08 |
| 8 | 2400 | 7.13 | -0.37 | 2.34 | 642.25 | 50975 | 37.6 | 33 | 1541.40 |
| 9 | 2709 | 6.58 | -0.25 | 2.20 | 461.45 | 72808 | 34.9 | 28 | 1250.07 |
| 10 | 1990 | 6.77 | -0.17 | 2.34 | 638.82 | 79070 | 34.8 | 29 | 1271.25 |
| 11 | 2392 | 6.66 | 0.47 | 2.09 | 484.38 | 78497 | 36.2 | 39 | 1158.64 |
| 12 | 2408 | 7.03 | 0.55 | 2.47 | 581.09 | 41245 | 32.2 | 23 | 1399.26 |
| 13 | 2627 | 7.03 | 0.77 | 2.04 | 267.71 | 33003 | 30.9 | 22 | 703.27 |
| 14 | 2500 | 7.00 | 1.92 | 2.02 | 572.84 | 90988 | 37.7 | 37 | 1432.10 |
| 15 | 1986 | 7.38 | 2.05 | 2.01 | 586.48 | 37950 | 34.3 | 24 | 1164.75 |
| 16 | 2500 | 7.18 | 2.12 | 2.64 | 368.73 | 45206 | 32.4 | 17 | 921.83 |
| 17 | 2668 | 7.35 | 2.84 | 2.22 | 351.47 | 79312 | 32.1 | 37 | 937.72 |
| 18 | 2517 | 6.95 | 2.88 | 2.07 | 458.24 | 37345 | 31.4 | 22 | 1153.39 |
| 19 | 1251 | 7.02 | 3.96 | 1.94 | 987.12 | 46226 | 30.4 | 36 | 1234.89 |
| 20 | 2998 | 6.85 | 4.04 | 2.17 | 357.45 | 70024 | 33.9 | 34 | 1071.64 |
| 21 | 2625 | 7.16 | 4.05 | 0.72 | 405.77 | 54982 | 35.6 | 26 | 1065.15 |
| 22 | 2300 | 6.99 | 4.05 | 2.00 | 680.80 | 54932 | 35.9 | 20 | 1565.84 |
| 23 | 2761 | 7.28 | 4.24 | 1.81 | 368.02 | 34097 | 33.6 | 20 | 1016.10 |
| 24 | 2764 | 7.07 | 4.58 | 2.13 | 303.95 | 46593 | 37.9 | 26 | 840.12 |
| 25 | 2430 | 7.05 | 5.09 | 2.50 | 393.90 | 51893 | 40.6 | 21 | 957.18 |
| 26 | 2154 | 6.54 | 5.14 | 2.63 | 562.12 | 88162 | 37.7 | 37 | 1210.81 |
| 27 | 2400 | 6.70 | 5.48 | 1.95 | 494.88 | 89016 | 36.4 | 34 | 1187.71 |
| 28 | 2430 | 6.91 | 5.86 | 2.04 | 310.07 | 114353 | 40.9 | 34 | 753.47 |
| 29 | 2549 | 7.58 | 5.91 | 1.41 | 373.46 | 75366 | 35.0 | 30 | 951.95 |
| 30 | 2500 | 7.03 | 5.98 | 2.05 | 235.81 | 48163 | 26.4 | 16 | 589.53 |
| 31 | 3653 | 6.84 | 6.08 | 2.13 | 413.08 | 49956 | 37.1 | 28 | 1508.98 |
| 32 | 2440 | 6.94 | 6.08 | 2.08 | 625.22 | 45990 | 30.3 | 36 | 1525.54 |
| 33 | 2600 | 7.07 | 6.13 | 2.73 | 274.30 | 45723 | 31.3 | 18 | 713.18 |
| 34 | 2160 | 7.00 | 6.27 | 1.95 | 542.62 | 43800 | 29.6 | 36 | 1172.06 |
| 35 | 2800 | 7.08 | 6.57 | 2.04 | 178.56 | 68711 | 32.9 | 18 | 499.97 |
| 36 | 2757 | 6.75 | 6.90 | 1.62 | 375.33 | 65150 | 40.7 | 24 | 1034.78 |
| 37 | 2450 | 6.81 | 6.94 | 1.95 | 329.09 | 39329 | 29.3 | 22 | 806.27 |
| 38 | 2400 | 7.64 | 7.12 | 1.64 | 297.37 | 63657 | 37.3 | 29 | 713.69 |
| 39 | 2270 | 6.62 | 7.39 | 1.78 | 323.17 | 67099 | 39.8 | 25 | 733.60 |
| 40 | 2800 | 6.76 | 7.67 | 2.23 | 468.84 | 75151 | 33.9 | 28 | 1312.75 |
| 41 | 2520 | 7.11 | 7.91 | 2.15 | 352.57 | 93876 | 35.0 | 40 | 888.48 |
| 42 | 2487 | 7.05 | 8.08 | 2.83 | 380.34 | 79701 | 35.0 | 39 | 945.91 |
| 43 | 2629 | 6.90 | 8.27 | 2.37 | 398.12 | 77115 | 35.9 | 30 | 1046.66 |
| 44 | 3200 | 7.17 | 8.54 | 3.07 | 312.15 | 52766 | 33.0 | 17 | 998.88 |
| 45 | 2335 | 6.75 | 8.58 | 2.19 | 452.16 | 32929 | 30.9 | 22 | 1055.79 |
| 46 | 2500 | 7.45 | 8.72 | 1.28 | 698.64 | 87863 | 38.5 | 29 | 1746.60 |
| 47 | 2449 | 7.00 | 8.75 | 1.76 | 367.19 | 73752 | 40.5 | 19 | 899.25 |
| 48 | 2625 | 6.96 | 8.79 | 2.51 | 431.93 | 85366 | 32.1 | 29 | 1133.82 |
| 49 | 3150 | 7.30 | 8.90 | 1.90 | 367.06 | 39180 | 34.8 | 18 | 1156.24 |
| 50 | 2625 | 6.96 | 9.12 | 1.98 | 400.53 | 56077 | 38.0 | 19 | 1051.39 |
| 51 | 2741 | 6.71 | 9.47 | 2.41 | 414.36 | 77449 | 37.0 | 34 | 1135.76 |
| 52 | 2500 | 6.82 | 10.17 | 2.17 | 481.11 | 56822 | 34.7 | 25 | 1202.78 |
| 53 | 2450 | 6.58 | 10.66 | 2.16 | 538.06 | 80470 | 36.4 | 30 | 1318.25 |
| 54 | 2986 | 7.56 | 10.97 | 0.29 | 330.48 | 55584 | 36.8 | 21 | 986.81 |
| 55 | 2967 | 6.98 | 11.34 | 1.85 | 249.93 | 78001 | 32.2 | 30 | 741.54 |
| 56 | 3000 | 7.28 | 11.45 | 1.88 | 291.87 | 75307 | 34.8 | 30 | 875.61 |
| 57 | 2500 | 6.76 | 11.51 | 2.19 | 517.40 | 76375 | 36.7 | 28 | 1293.50 |
| 58 | 2600 | 6.92 | 11.73 | 2.56 | 551.58 | 61857 | 33.8 | 31 | 1434.11 |
| 59 | 2800 | 6.73 | 11.83 | 2.16 | 386.81 | 61312 | 34.2 | 16 | 1083.07 |
| 60 | 2986 | 6.91 | 11.95 | 2.10 | 427.50 | 72040 | 39.0 | 31 | 1276.52 |
| 61 | 2223 | 6.77 | 12.47 | 1.98 | 453.94 | 92414 | 34.9 | 40 | 1009.11 |
| 62 | 2300 | 7.33 | 12.80 | 0.87 | 512.46 | 92602 | 39.3 | 33 | 1178.66 |
| 63 | 3799 | 7.87 | 13.78 | 1.07 | 345.27 | 59599 | 35.6 | 28 | 1311.68 |
| 64 | 2700 | 6.95 | 14.09 | 3.38 | 234.04 | 72453 | 36.0 | 23 | 631.91 |
| 65 | 2650 | 7.33 | 14.23 | 1.17 | 348.33 | 67925 | 41.1 | 16 | 923.07 |
| 66 | 2500 | 6.95 | 14.60 | 2.14 | 348.47 | 42631 | 24.7 | 25 | 871.18 |
| 67 | 2994 | 7.21 | 14.88 | 0.93 | 294.95 | 75652 | 40.5 | 25 | 883.08 |
| 68 | 2718 | 7.25 | 15.42 | 2.22 | 361.14 | 39650 | 32.9 | 18 | 981.58 |
| 69 | 3700 | 7.65 | 16.18 | 1.68 | 467.71 | 48033 | 30.3 | 15 | 1730.53 |
| 70 | 2000 | 6.93 | 17.23 | 2.41 | 403.78 | 67403 | 36.2 | 19 | 807.56 |
| 71 | 2400 | 6.79 | 18.43 | 2.81 | 245.74 | 80597 | 32.4 | 27 | 589.78 |
| 72 | 2450 | 7.37 | 20.76 | 1.09 | 339.94 | 60928 | 43.5 | 21 | 832.85 |
| 73 | 2575 | 6.76 | 25.54 | 0.64 | 400.82 | 73762 | 41.6 | 29 | 1032.11 |
| 74 | 2400 | 7.97 | 28.81 | 1.77 | 326.54 | 64225 | 31.4 | 15 | 783.70 |
| Mean | 2580.47 | 7.04 | 7.41 | 2.03 | 420.31 | 62807.70 | 35.20 | 26.31 | 1059.38 |
| Standard. Dev. | 372.38 | 0.30 | 6.58 | 0.55 | 136.31 | 17782.89 | 3.63 | 6.96 | 278.52 |
| Min | 1251.00 | 6.54 | -8.31 | 0.29 | 178.56 | 32929.00 | 24.70 | 14.00 | 499.97 |
| Q1 | 2400.00 | 6.83 | 3.98 | 1.86 | 332.85 | 46953.00 | 32.53 | 20.25 | 877.48 |
| Median | 2500.00 | 7.00 | 7.03 | 2.08 | 396.01 | 62757.00 | 35.00 | 26.50 | 1035.75 |
| Q3 | 2735.25 | 7.18 | 11.42 | 2.33 | 483.56 | 76194.25 | 37.53 | 30.75 | 1228.87 |
| Max | 3799.00 | 7.97 | 28.81 | 3.38 | 987.12 | 114353.00 | 43.50 | 40.00 | 1746.60 |
| Skew | 0.53 | 0.90 | 0.49 | -0.76 | 1.24 | 0.30 | -0.17 | 0.14 | 0.36 |
| IQR | 335.25 | 0.35 | 7.44 | 0.47 | 150.72 | 29241.25 | 5.00 | 10.50 | 351.39 |
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
