Question: Entered Answer Preview sinh(a) + cosh (x) - sinh(x) + cosh(x) sinh(x) [sinh(x)+([cosh(x)]^2)-sinh(x)+cosh(x)*sinh(x)]/([([cosh(x)]^2)-1]*[cosh(x)+([([cosh(x)]^2)-1]^(1/2))]) (cosh?(x) - 1) cosh(a) + (cosh?(x) - 1) ? (1 point) Let

![sinh(x) [sinh(x)+([cosh(x)]^2)-sinh(x)+cosh(x)*sinh(x)]/([([cosh(x)]^2)-1]*[cosh(x)+([([cosh(x)]^2)-1]^(1/2))]) (cosh?(x) - 1) cosh(a) + (cosh?(x) - 1) ? (1](https://s3.amazonaws.com/si.experts.images/answers/2024/06/66765c9944af3_98566765c9933003.jpg)

![Dry = [sinh(x)+cosh^2(x)-sinh(x)+cosh(x)sinh(x)]/[(cosh^2(1 point) Use sigma notation to write the Maclaurin series](https://s3.amazonaws.com/si.experts.images/answers/2024/06/66765c99ef6bf_98566765c99e00ca.jpg)
Entered Answer Preview sinh(a) + cosh (x) - sinh(x) + cosh(x) sinh(x) [sinh(x)+([cosh(x)]^2)-sinh(x)+cosh(x)*sinh(x)]/([([cosh(x)]^2)-1]*[cosh(x)+([([cosh(x)]^2)-1]^(1/2))]) (cosh?(x) - 1) cosh(a) + (cosh?(x) - 1) ? (1 point) Let y(x) = In cosh(x) + cosh?(x) - 1) The derivative Dry = [sinh(x)+cosh^2(x)-sinh(x)+cosh(x)sinh(x)]/[(cosh^2(1 point) Use sigma notation to write the Maclaurin series for the function. ]n(7 + x). (Note rst term separate and summation from k 1)1
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
