Question: # Evaluate on the test set y _ pred = grid _ svm . predict ( X _ test ) print ( SVM Test
# Evaluate on the test set
ypred gridsvmpredictXtest
printSVM Test Accuracy:", accuracyscoreytest, ypred
printClassification Report:
classificationreportytest, ypred
printConfusion Matrix:
confusionmatrixytest, ypred
# # KNearest Neighbors KNN
# Define hyperparameters for KNN
paramgridknn
'classifiernneighbors':
'classifierweights': uniform 'distance'
'classifierp:
# Set up GridSearchCV
gridknn GridSearchCVPipeline
preprocessor preprocessor
classifier KNeighborsClassifier
paramgridknn cv scoring'accuracy'
# Fit GridSearchCV
gridknnfitXtrain, ytrain
# Best parameters and score
printBest Parameters for KNN: gridknnbestparams
printBest Score for KNN: gridknnbestscore
# Evaluate on the test set
ypred gridknnpredictXtest
printKNN Test Accuracy:", accuracyscoreytest, ypred
printClassification Report:
classificationreportytest, ypred
printConfusion Matrix:
confusionmatrixytest, ypred
# # Train and Evaluate the Models
# Store results in a dictionary
results
# Logistic Regression
ypred gridlogreg.predictXtest
resultsLogistic Regression'
'Accuracy': accuracyscoreytest, ypred
'Classification Report': classificationreportytest, ypred, outputdictTrue
'Confusion Matrix': confusionmatrixytest, ypred
# Decision Tree
ypred griddectree.predictXtest
resultsDecision Tree'
'Accuracy': accuracyscoreytest, ypred
'Classification Report': classificationreportytest, ypred, outputdictTrue
'Confusion Matrix': confusionmatrixytest, ypred
# Random Forest
ypred gridrfpredictXtest
resultsRandom Forest'
'Accuracy': accuracyscoreytest, ypred
'Classification Report': classificationreportytest, ypred, outputdictTrue
'Confusion Matrix': confusionmatrixytest, ypred
# SVM
ypred gridsvmpredictXtest
resultsSVM
'Accuracy': accuracyscoreytest, ypred
'Classification Report': classificationreportytest, ypred, outputdictTrue
'Confusion Matrix': confusionmatrixytest, ypred
# KNN
ypred gridknnpredictXtest
resultsKNN
'Accuracy': accuracyscoreytest, ypred
'Classification Report': classificationreportytest, ypred, outputdictTrue
'Confusion Matrix': confusionmatrixytest, ypred
# # Compare Accuracy
import matplotlib.pyplot as plt
# Extract accuracies
models listresultskeys
accuracies resultsmodelAccuracy for model in models
# Plot
pltfigurefigsize
pltbarmodels accuracies, colorblue 'green', 'red', 'purple', 'orange'
plttitleModel Accuracy Comparison'
pltxlabelModel
pltylabelAccuracy
pltylim
pltshow
# # Visualize Confusion Matrices
import seaborn as sns
def plotconfusionmatrixconfmatrix, title:
pltfigurefigsize
snsheatmapconfmatrix, annotTrue, fmtd cmap'Blues', cbarFalse
plttitletitle
pltxlabelPredicted Label'
pltylabelTrue Label'
pltshow
# Plot confusion matrices for each model
for model, result in results.items:
plotconfusionmatrixresultConfusion Matrix' fmodel Confusion Matrix'
# # TextBased Application
import joblib
# Save the model
joblib.dumpgridrfbestestimator 'randomforestmodel.pkl
Explain the code
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
