Question: Find the geodesic equations and geodesic for spherical polar coordinates? Show that every point of R3 is isotropic for the metric ds = (x)-2(dx1)2



Find the geodesic equations and geodesic for spherical polar coordinates? Show that every point of R3 is isotropic for the metric ds = (x)-2(dx1)2 + (x1)-2(dx) + (x1)-(dx)2 Also find the Ricci tensor of mixed kind. Question 3: (a) Define the followings (15 Marks) (i) Invariant (ii) Tensor (iii) Riemannian curvature (iv) Affine Tensor (v) Arc length (vi) Cartesian Tensor (6) (b) Prove the second Bianchi's identity? (9)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
