Question: Given a planar graph G such that all the vertices have even degrees: Prove that all the regions separated out by this graph (all

Given a planar graph G such that all the vertices have even

Given a planar graph G such that all the vertices have even degrees: Prove that all the regions separated out by this graph (all the faces) can be 2-colored. That is, the faces can be colored such that no two faces which share an edge can have same color. (Hint: Use induction. Look at outer rim of the graph and think about removing all the edges of the outer rim.)

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!