Question: How to input values like the x values = ( 1 , 1 , 2 , 3 , 4 , 5 , 6 , 7

How to input values like the x values =(1,1,2,3,4,5,6,7,8,9) and y values =(13,14,17,12,23,24,25,24,28,32,33) in this code import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
train_data = pd.read_csv(r"C:\Users\jamar\Downloads\train.csv")
test_data = pd.read_csv(r"C:\Users\jamar\Downloads\test.csv")
x_train = train_data['x'].values
y_train = train_data['y'].values
x_test = test_data['x'].values
y_test = test_data['y'].values
m = np.random.rand()
c = np.random.rand()
learning_rate =0.01
epochs =200
error_list =[]
for epoch in range(epochs):
y_pred = m * x_train + c
error = np.mean((y_train - y_pred)**2)
dm =-2* np.mean(x_train *(y_train - y_pred))
dc =-2* np.mean(y_train - y_pred)
m -= learning_rate * dm
c -= learning_rate * dc
if epoch %10==0:
error_list.append(error)
y_test_pred = m * x_test + c
test_error = np.mean((y_test - y_test_pred)**2)
plt.figure(figsize=(10,6))
plt.scatter(x_train, y_train, label="Training Data")
plt.plot(x_train, m * x_train + c, color='red', label="Optimum Line")
plt.title("Training Data and Optimum Line")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.show()
plt.figure(figsize=(10,6))
plt.scatter(x_test, y_test, label="Testing Data")
plt.plot(x_test, m * x_test + c, color='green', label="Optimum Line")
plt.title("Testing Data and Optimum Line")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.show()
plt.figure(figsize=(10,6))
plt.plot(range(0, epochs, 10), error_list, label="Error Convergence")
plt.title("Error Convergence Over Epochs")
plt.xlabel("Epochs")
plt.ylabel("Error")
plt.legend()
plt.show()
print(f"Final parameters: m ={m:.4f}, c ={c:.4f}")
print(f"Final training error: {error:.4f}")
print(f"Test error: {test_error:.4f}")

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!