Question: I need help solving this problem. c. What is your estimate of the mean and standard deviation of the sampling distribution of fractions defective for


c. What is your estimate of the mean and standard deviation of the sampling distribution of fractions defective for samples of this size? (Round your intermediate calculations and final answers to 4 decimal places.) d. What control limits would give an alpha risk of 03 for this process? (Round your intermediate calculations to 4 decimal places. Round your " 2 " value to 2 decimal places and other answers to 4 decimal places.) e. What alpha risk would control limits of 0470 and .0014 provide? (Round your intermediate calculations to 4 decimal places. Round your " z " value to 2 decimal places and "alpha risk" value to 4 decimal places.) \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|} \hlinez & .00 & .01 & .02 & .03 & .04 & .05 & .06 & .07 & .08 & .09 \\ \hline 0.0 & .0000 & .0040 & .0080 & .0120 & .0160 & 0199 & .0239 & .0279 & .0319 & .0359 \\ \hline 0.1 & 0398 & .0438 & 0478 & .0517 & .0557 & 0596 & .0536 & .0675 & 0714 & .0753 \\ \hline 0.2 & .0793 & .0832 & 0871 & .0910 & .0948 & 0987 & .1026 & .1064 & .1103 & .1141 \\ \hline 0.3 & .1179 & .1217 & .1255 & .1293 & .1331 & .1368 & v,1406 & 1443 & .1480 & .1517 \\ \hline 0.4 & .1554 & .1591 & .1628 & .1664 & .1700 & .1736 & .1772 & .1808 & .184 & .1879 \\ \hline 0.5 & .1915 & .1950 & .1985 & 2019 & .2054 & 2088 & 2123 & 2157 & 2190 & m \\ \hline 0.6 & .2257 & 2291 & .2324 & .2357 & 2389 & .2422 & 2454 & 2485 & 2517 & 2549 \\ \hline 0.7 & .2580 & 2611 & .2642 & 2673 & .2703 & .2734 & 2764 & 2794 & 2823 & 2052 \\ \hline 0.8 & 2881 & .2910 & .2839 & 2967 & .2995 & 3023 & .3051 & .3078 & 3106 & .3133 \\ \hline 0.9 & 3159 & .3186 & 3212 & 3238 & .3264 & .3289 & .3315 & .3340 & 3365 & 3359 \\ \hline 1.0 & 3413 & .3438 & 3461 & 3485 & .3508 & 3531 & 3554 & 3577 & 3599 & .3621 \\ \hline 1.1 & 3643 & .3665 & 3686 & 3708 & 3728 & 3749 & 3770 & 3790 & 3810 & .3830 \\ \hline 12 & 3849 & .3869 & 3888 & 3907 & .3925 & 394 & 3962 & 3980 & 3997 & .4015 \\ \hline 1.3 & .4032 & .4049 & .4066 & .4082 & 4099 & .4115 & .4131 & .4147 & 4162 & 4177 \\ \hline 1.4 & .4192 & .4207 & .422 & 4236 & 4251 & 4265 & .4279 & .4292 & 4306 & A319 \\ \hline 15 & .4332 & .4345 & .4357 & 4370 & 4382 , & .4394 & .4406 & 4418 & 4429 & 4441 \\ \hline 1.6 & .4452 & 4463 & 4474 & 4484 & 4495 & 4505 & .4515 & .4525 & .4535 & 4545 \\ \hline 1.7 & .4554 & .4564 & .4573 & .4582 & 4591 & 4599 & .4608 & .4616 & 4625 & 4633 \\ \hline 18 & 4641 & 4649 & 4656 & 4664 & 4671 & .4578 & 4686 & .4690 & .4699 & .4706 \\ \hline 19 & .4713 & .4719 & 4726 & 4732 & .4738 & 4744 & .4750 & .4756 & 4781 & .4767 \\ \hline 20 & 772 & 4778 & A783 & 4788 & .4793 & .4798 & .4803 & 4808 & A812 & 4817 \\ \hline 2.1 & 4821 & 4826 & 4830 & 4834 & 4838 & .4842 & 4846 & 4850 & .4254 & .4857 \\ \hline 22 & 4881 & 4854 & 4868 & 4871 & 4875 & 4878 & .4881 & 4884 & 4887 & 4890 \\ \hline 2.3 & .4893 & 4896 & 4898 & 4901 & 4904 & 4906 & 4909 & .4911 & 4913 & 4916 \\ \hline 24 & 4918 & 4920 & .4922 & 4925 & 4927 & .4929 & .4931 & 4932 & ASB4 & .4936 \\ \hline 2.5 & .4838 & 4940 & ASA1 & 4943 & 4945 & .4946 & .4943 & . 4949 & A 4951 & A952 \\ \hline 26 & .4953 & 4955 & 4956 & A957 & 4959 & 4960 & 4961 & 4962 & 4563 & 4964 \\ \hline 2.7 & .4955 & 4966 & AS67 & 4968 & 4969 & 4970 & .4977 & 4972 & .4973 & 4974 \\ \hline 2B & .4974 & 4975 & A976 & 4977 & 497 & 4978 & 4979 & .4979 & 4380 & A981 \\ \hline 29 & 4981 & 4982 & 4982 & 4983 & A984 & 4984 & .4985 & .4985 & 4586 & 4996 \\ \hline 3.0 & .4887 & 4987 & 4987 & A988 & 4988 & 4989 & .4989 & .4989 & 4990 & A990 \\ \hline \end{tabular} Using samples of 196 credit card statements, an auditor found the following: Use Table-A. Click here for the Excel Data File a. Determine the fraction defective in each sample. (Round your answers to 4 decimal places.) b. If the true fraction defective for this process is unknown, what is your estimate of it? (Round your answer to 1 decimal pla
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
