Question: i need to perform a regression analysis , in which i will predict the profit of startups for a venture capitalist who wants to analyze
i need to perform a regression analysis, in which i will predict the profit of startups for a venture capitalist who wants to analyze whether a startup is worth investing to get good returns. I will analyze a dataset which contains the operational details of startups (R&D, marketing spends etc.) is and predicts the profit of a new Startup based on those features. To Venture Capitalists this could be a boon as to whether they should invest in a particular Startup or not.
| R&D Spend | Administration | Marketing Spend | State | Profit |
| 165349.2 | 136897.8 | 471784.1 | New York | 192261.8 |
| 162597.7 | 151377.6 | 443898.5 | California | 191792.1 |
| 153441.5 | 101145.6 | 407934.5 | Florida | 191050.4 |
| 144372.4 | 118671.9 | 383199.6 | New York | 182902 |
| 142107.3 | 91391.77 | 366168.4 | Florida | 166187.9 |
| 131876.9 | 99814.71 | 362861.4 | New York | 156991.1 |
| 134615.5 | 147198.9 | 127716.8 | California | 156122.5 |
| 130298.1 | 145530.1 | 323876.7 | Florida | 155752.6 |
| 120542.5 | 148719 | 311613.3 | New York | 152211.8 |
| 123334.9 | 108679.2 | 304981.6 | California | 149760 |
| 101913.1 | 110594.1 | 229161 | Florida | 146122 |
| 100672 | 91790.61 | 249744.6 | California | 144259.4 |
| 93863.75 | 127320.4 | 249839.4 | Florida | 141585.5 |
| 91992.39 | 135495.1 | 252664.9 | California | 134307.4 |
| 119943.2 | 156547.4 | 256512.9 | Florida | 132602.7 |
| 114523.6 | 122616.8 | 261776.2 | New York | 129917 |
| 78013.11 | 121597.6 | 264346.1 | California | 126992.9 |
| 94657.16 | 145077.6 | 282574.3 | New York | 125370.4 |
| 91749.16 | 114175.8 | 294919.6 | Florida | 124266.9 |
| 86419.7 | 153514.1 | 0 | New York | 122776.9 |
| 76253.86 | 113867.3 | 298664.5 | California | 118474 |
| 78389.47 | 153773.4 | 299737.3 | New York | 111313 |
| 73994.56 | 122782.8 | 303319.3 | Florida | 110352.3 |
| 67532.53 | 105751 | 304768.7 | Florida | 108734 |
| 77044.01 | 99281.34 | 140574.8 | New York | 108552 |
| 64664.71 | 139553.2 | 137962.6 | California | 107404.3 |
| 75328.87 | 144136 | 134050.1 | Florida | 105733.5 |
| 72107.6 | 127864.6 | 353183.8 | New York | 105008.3 |
| 66051.52 | 182645.6 | 118148.2 | Florida | 103282.4 |
| 65605.48 | 153032.1 | 107138.4 | New York | 101004.6 |
| 61994.48 | 115641.3 | 91131.24 | Florida | 99937.59 |
| 61136.38 | 152701.9 | 88218.23 | New York | 97483.56 |
| 63408.86 | 129219.6 | 46085.25 | California | 97427.84 |
| 55493.95 | 103057.5 | 214634.8 | Florida | 96778.92 |
| 46426.07 | 157693.9 | 210797.7 | California | 96712.8 |
| 46014.02 | 85047.44 | 205517.6 | New York | 96479.51 |
| 28663.76 | 127056.2 | 201126.8 | Florida | 90708.19 |
| 44069.95 | 51283.14 | 197029.4 | California | 89949.14 |
| 20229.59 | 65947.93 | 185265.1 | New York | 81229.06 |
| 38558.51 | 82982.09 | 174999.3 | California | 81005.76 |
| 28754.33 | 118546.1 | 172795.7 | California | 78239.91 |
| 27892.92 | 84710.77 | 164470.7 | Florida | 77798.83 |
| 23640.93 | 96189.63 | 148001.1 | California | 71498.49 |
| 15505.73 | 127382.3 | 35534.17 | New York | 69758.98 |
| 22177.74 | 154806.1 | 28334.72 | California | 65200.33 |
| 1000.23 | 124153 | 1903.93 | New York | 64926.08 |
| 1315.46 | 115816.2 | 297114.5 | Florida | 49490.75 |
| 0 | 135426.9 | 0 | California | 42559.73 |
| 542.05 | 51743.15 | 0 | New York | 35673.41 |
| 0 | 116983.8 | 45173.06 | California | 14681.4 |
| SUMMARY OUTPUT | ||||||||||
| Regression Statistics | ||||||||||
| Multiple R | 0.975062 | |||||||||
| R Square | 0.950746 | |||||||||
| Adjusted R Square | 0.947534 | |||||||||
| Standard Error | 9232.335 | |||||||||
| Observations | 50 | |||||||||
| ANOVA | ||||||||||
| df | SS | MS | F | Significance F | ||||||
| Regression | 3 | 7.57E+10 | 2.52E+10 | 295.9781 | 4.53E-30 | |||||
| Residual | 46 | 3.92E+09 | 85236007 | |||||||
| Total | 49 | 7.96E+10 | ||||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |||
| Intercept | 50122.19 | 6572.353 | 7.626218 | 1.06E-09 | 36892.73 | 63351.65 | 36892.73 | 63351.65 | ||
| R&D Spend | 0.805715 | 0.045147 | 17.84637 | 2.63E-22 | 0.714838 | 0.896592 | 0.714838 | 0.896592 | ||
| Administration | -0.02682 | 0.051029 | -0.52551 | 0.601755 | -0.12953 | 0.0759 | -0.12953 | 0.0759 | ||
| Marketing Spend | 0.027228 | 0.016451 | 1.655077 | 0.104717 | -0.00589 | 0.060343 | -0.00589 | 0.060343 | ||
| RESIDUAL OUTPUT | ||||||||||
| Observation | Predicted Profit | Residuals | ||||||||
| 1 | 192521.3 | -259.423 | ||||||||
| 2 | 189156.8 | 2635.292 | ||||||||
| 3 | 182147.3 | 8903.111 | ||||||||
| 4 | 173696.7 | 9205.29 | ||||||||
| 5 | 172139.5 | -5951.57 | ||||||||
| 6 | 163580.8 | -6589.66 | ||||||||
| 7 | 158114.1 | -1991.59 | ||||||||
| 8 | 160021.4 | -4268.76 | ||||||||
| 9 | 151741.7 | 470.0703 | ||||||||
| 10 | 154884.7 | -5124.72 | ||||||||
| 11 | 135509 | 10612.93 | ||||||||
| 12 | 135573.7 | 8685.687 | ||||||||
| 13 | 129138.1 | 12447.47 | ||||||||
| 14 | 127488 | 6819.358 | ||||||||
| 15 | 149548.6 | -16946 | ||||||||
| 16 | 146235.2 | -16318.1 | ||||||||
| 17 | 116915.4 | 10077.52 | ||||||||
| 18 | 130192.4 | -4822.08 | ||||||||
| 19 | 129014.2 | -4747.33 | ||||||||
| 20 | 115635.2 | 7141.644 | ||||||||
| 21 | 116639.7 | 1834.361 | ||||||||
| 22 | 117319.5 | -6006.43 | ||||||||
| 23 | 114707 | -4354.73 | ||||||||
| 24 | 109996.6 | -1262.63 | ||||||||
| 25 | 113363 | -4810.93 | ||||||||
| 26 | 102237.7 | 5166.615 | ||||||||
| 27 | 110600.6 | -4867.04 | ||||||||
| 28 | 114408.1 | -9399.76 | ||||||||
| 29 | 101660 | 1622.354 | ||||||||
| 30 | 101795 | -790.343 | ||||||||
| 31 | 99452.37 | 485.2171 | ||||||||
| 32 | 97687.86 | -204.296 | ||||||||
| 33 | 99001.33 | -1573.49 | ||||||||
| 34 | 97915.01 | -1136.09 | ||||||||
| 35 | 89039.27 | 7673.526 | ||||||||
| 36 | 90511.6 | 5967.91 | ||||||||
| 37 | 75286.17 | 15422.02 | ||||||||
| 38 | 89619.54 | 329.6023 | ||||||||
| 39 | 69697.43 | 11531.63 | ||||||||
| 40 | 83729.01 | -2723.25 | ||||||||
| 41 | 74815.95 | 3423.956 | ||||||||
| 42 | 74802.56 | 2996.274 | ||||||||
| 43 | 70620.41 | 878.0782 | ||||||||
| 44 | 60167.04 | 9591.94 | ||||||||
| 45 | 64611.35 | 588.9751 | ||||||||
| 46 | 47650.65 | 17275.43 | ||||||||
| 47 | 56166.21 | -6675.46 | ||||||||
| 48 | 46490.59 | -3930.86 | ||||||||
| 49 | 49171.39 | -13498 | ||||||||
| 50 | 48215.13 | -33533.7 |
having this data i run the following regression and recieved the following results in excell
now i need to make a conclusion based on the results and to match the question at the beginning .what will be the conclusion and the python code
statsrishabh
29 minutes ago
Missing information: reference
You
17 minutes ago
i need to do the implementation of regression analysis, in which we will predict the profit of startups for a venture capitalist who wants to analyze whether a startup is worth investing to get good returns. i analyzed a dataset which contains the operational details of startups (R&D, marketing spends etc.) is and predicts the profit of a new Startup based on those features. To Venture Capitalists this could be a boon as to whether they should invest in a particular Startup or not.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
