Question: Let $T: R^{2} ightarrow R^{3}$ be defined by $T=left(left[begin{array} {1}x_{1} x_{2} end{array} ight] ight)=left[begin{array}{c}x_{1}+8 x_{2} -x_{1} end{array} ight]$ Find the matrix $[T]_{B^{prime), B} $

 Let $T: R^{2} ightarrow R^{3}$ be defined by $T=\left(\left[\begin{array} {1}x_{1} \\x_{2}

Let $T: R^{2} ightarrow R^{3}$ be defined by $T=\left(\left[\begin{array} {1}x_{1} \\x_{2} \end{array} ight] ight)=\left[\begin{array}{c}x_{1}+8 x_{2} \ -x_{1} \end{array} ight]$ Find the matrix $[T]_{B^{\prime), B} $ relative to the bases $B=\left\ {\boldsymbol{u}_{1}, \boldsymbol{u}_{2} ight\}$ and $B^{\prime)=\left\{v_{1}, v_{2}, V_{3} ight\}$, where $$ u_{1}=\left|\begin{array}{1} 1 3 \end{array} ight], \quad u_{2}=\left[\begin{array}{c} -2 4 \end{array} ight], \quad v_{1}=\left[\begin{array}{1} 1 1 1 \end{array} ight], \quad v_{2}=\left[\begin{array}{1} 2 2 0 \end{array} ight], \quad v_{3}=\left[\begin{array}{1} 3 O 0 \end{array} ight] $$ NOTE: Enter the exact values. $$ [T]_{B^{\prime}, B}=\left(\begin{array}{11} ? & ? ? & ? ? & ? \end{array} ight) $$ CS.JG. 124

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!