Question: Let u1 and u2 ED solutions .... (1) where p, q and r are continuous functions on an interval I and also p(x) is never

Let u1 and u2 ED solutions

  .... (1)

where p, q and r are continuous functions on an interval I and also p(x) is never zero.
Show that if W = W(u1, u2), then


  ....(2)


Then demonstrate that by making use of ED and the fact that u1 and u2 are solutions,
you get that
 

 ......(3)


Finally, resolve the previous ED4. (10 puntos) Sean uz y uz soluciones de la ED p(x)u"

4. (10 puntos) Sean uz y uz soluciones de la ED p(x)u" + q(x)u' + r(x)u = 0 donde p, q yr son funciones continuas en un intervalo I y adems p(x) nunca es cero. Demuestre que si W = W (u1, u2), entonces dW -= u,p(x)u% uzp(x)u p(x) dx Luego demuestre que al hacer uso de la ED y el hecho de que u, y uz son soluciones, se obtiene que dw p(x) + q(x)W = 0 dx Por ltimo, resuelva la ED anterior.

Step by Step Solution

3.45 Rating (164 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

het U emd 42 be u qau U 0 where 9 omd are continuous fimctions on ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!