Question: Please help me with this problem. It's fine if you just know how to solve a part of the problem. Please write down what you
Please help me with this problem. It's fine if you just know how to solve a part of the problem. Please write down what you can do. Thank you in advance.

WLLN vs CLT and Large vs Small Deviations A stronger version (called Berry-Esseen Theorem) of CLT states that if X1, X2, ..., Xn are independent and identically distributed random variables with zero mean and unit variance and E[X,|3] = 3, then for all r and n we have [Fr(x) - D(x)| 0.47483 Vn 2, where Fr(.) is the CDF of - _ Xi, and o(.) is the CDF of the zero-mean and unit-variance Gaussian random variable. The said bound is due to Irina Shevtsova. A fair coin is tossed 1000 times. Let Pm denote the probability of observing more than m HEADS. . Find an upper bound Am on Pm based on the Chernoff Inequality (WLLN) developed in HW 6, Prob. 7 for m > 500. . Find an upper bound Bm on Pm in terms of o(.) based on Berry-Esseen Theorem (CLT) stated above for m > 500. . Plot the two bounds as a function of m for in the range from 501 to 600. Which bound is better in what region
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
