Question: Prove that if a real valued sequence (an) does not have a lower bound then there is a subsequence (am) that converges to negative infinity


Prove that if a real valued sequence (an) does not have a lower bound then there is a subsequence (am) that converges to negative infinity in the extended reals
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
