Question: (PYTHON AND JUPYTER NOTEBOOK) carsData.csv mpg engine horse weight acceleration year origin cylinder 18 307 130 3504 12 1994 1 8 27 350 165 3693
(PYTHON AND JUPYTER NOTEBOOK)

carsData.csv
| mpg | engine | horse | weight | acceleration | year | origin | cylinder |
| 18 | 307 | 130 | 3504 | 12 | 1994 | 1 | 8 |
| 27 | 350 | 165 | 3693 | 11.5 | 1995 | 1 | 4 |
| 18 | 318 | 150 | 3436 | 11 | 2003 | 1 | 8 |
| 20 | 304 | 150 | 3433 | 12 | 1997 | 1 | 6 |
| 21 | 302 | 140 | 3449 | 10.5 | 1997 | 1 | 6 |
| 15 | 429 | 198 | 4341 | 10 | 2000 | 1 | 8 |
| 28 | 454 | 220 | 4354 | 9 | 1994 | 1 | 4 |
| 14 | 440 | 215 | 4312 | 8.5 | 1995 | 1 | 8 |
| 25 | 455 | 225 | 4425 | 10 | 2000 | 1 | 4 |
| 15 | 390 | 190 | 3850 | 8.5 | 1997 | 1 | 8 |
3.1. Create a new dataframe containing only 'horse' and 'mpg' columns # TODO: Your code goes here 3.2. Replace the index column with 'horse' # TODO: Your code goes here 3.3. Create a line graph of your dataframe # TODO: Your code goes here 3.1. Create a new dataframe containing only 'horse' and 'mpg' columns # TODO: Your code goes here 3.2. Replace the index column with 'horse' # TODO: Your code goes here 3.3. Create a line graph of your dataframe # TODO: Your code goes here
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
