Question: python code, need the graph CODE import Assignment2 import numpy as np import copy import random import pandas as pd import time import matplotlib.pyplot as
python code, need the graph
CODE
import Assignment2 import numpy as np import copy import random import pandas as pd import time import matplotlib.pyplot as plt def display_hash(hash_table): for i in range(len(hash_table)): print(i, hash_table[i]) print() def hash_chaining_build(arr): size = int(len(arr) / 10) hash_table = [[] for _ in range(size)] for key in arr: hash_key = hash_function(key, size) hash_table[hash_key].append(key) # print(hash_table) return hash_table def hash_probing_build(arr): size = len(arr) * 2 hash_table = [None for _ in range(size)] for key in arr: hash_key = hash_function(key, size) i = 0 while hash_table[hash_key]: i += 1 hash_key = hash_function_probing(hash_key, size, i) hash_table[hash_key] = key return hash_table def hash_chaining_search(hash_table, arr): size = len(hash_table) found = [False] * len(arr) for j in range(len(arr)): key = arr[j] hash_key = hash_function(key, size) for item in hash_table[hash_key]: if item == key: found[j] = True break return found def hash_probing_search(hash_table, arr): size = len(hash_table) found = [False] * len(arr) # found = [False for i in range(size)] for j in range(len(arr)): key = arr[j] hash_key = hash_function(key, size) i = 0 while hash_table[hash_key] != key: i += 1 hash_key = hash_function_probing(hash_key, size, i) found[j] = True return found def hash_function(key, size): return key % size def hash_function_probing(hash_key, size, i): a, b, c = 5, 7, 9 hash_key = (hash_key + a * i ** 2 + b * i + c) % size return hash_key def random_list(size): # arr = [i**3 for i in range(size)] # random.shuffle(arr) # return arr return random.sample(range(size * 10), size) def run_algs(algs, sizes, trials): dict_algs = {} for alg in algs: dict_algs[alg[2]] = {} for size in sizes: for alg in algs: dict_algs[alg[2]][size] = 0 for trial in range(1, trials + 1): arr = random_list(size) arr_copy = copy.deepcopy(arr) random.shuffle(arr_copy) for alg in algs: start_time = time.time() build = alg[0] ds = build(arr) search = alg[1] found = search(ds, arr_copy) if size == sizes[0]: print(alg[2]) print(ds) print(found) end_time = time.time() net_time = end_time - start_time dict_algs[alg[2]][size] += 1000 * net_time return dict_algs # def mini_test(): # size = 100 # arr = random_list(size) # ht_chaining = hash_chaining_build(arr) # ht_proving = hash_probing_build(arr) # display_hash(ht_chaining) # display_hash(ht_proving) # random.shuffle(arr) # found = hash_chaining_search(ht_chaining, arr) # print("Hash Chaining Search: ") # print(found) # found = hash_probing_search(ht_proving, arr) # print("Hash Probing Search: ") # print(found) def plot_times(dict_algs, sizes, trials, algs, title, file_name): alg_num = 0 plt.xticks([j for j in range(len(sizes))], [str(size) for size in sizes]) for alg in algs: alg_num += 1 d = dict_algs[alg.__name__] x_axis = [j + 0.05 * alg_num for j in range(len(sizes))] y_axis = [d[i] for i in sizes] plt.bar(x_axis, y_axis, width=0.05, alpha=0.75, label=alg.__name__) plt.legend() plt.title(title) plt.xlabel("Size") plt.ylabel("Time for " + str(trials) + " trials (ms)") plt.savefig(file_name) plt.show() def print_times(dict_algs): pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500) pd.set_option("display.width", 1000) df = pd.DataFrame.from_dict(dict_algs).T print(df) def big_test(): assn = "Assignment6" sizes = [100, 1000, 10000] algs = [(hash_probing_build, hash_probing_search, "Hash Probing"), (hash_chaining_build, hash_chaining_search, "Hash Chaining")] trials = 1 title = "Runtime of String Search Algorithms (Build and Search)" dict_algs = run_algs(algs, sizes, trials) for alg in dict_algs: print(alg) for size in dict_algs[alg]: print(size, dict_algs[alg][size] / trials) Assignment2.(dict_algs) Assignment2.plot_times(dict_algs, sizes, trials, algs, title, assn + '.png') def main(): # mini_test() big_test() if __name__ == "__main__": main() Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
