Question: PYTHON I am having issues with this code everytime i tried to run it, it says that 'file' is not define can someone help me

PYTHON

I am having issues with this code everytime i tried to run it, it says that 'file' is not define can someone help me wth this. The file that I am using is call 'muscle1.csv' Thank you in advance

This is the information that the file contains:

BodyMass

WorkLevel

Heat Production

43.7

19

177

43.7

43

279

43.7

56

346

54.6

13

160

54.6

19

193

54.6

43

280

54.6

56

335

55.7

13

169

55.7

26

212

55.7

34.5

244

55.7

43

285

58.8

13

181

58.8

43

298

60.5

19

212

60.5

43

317

60.5

56

347

61.9

13

186

61.9

19

216

61.9

34.5

265

61.9

43

306

61.9

56

348

66.7

13

209

66.7

43

324

66.7

56

352

Executable Code:

#import numpy import numpy as n #import for printing from __future__ import print_function #import for regression from sklearn import linear_model #import for plotting axes from mpl_toolkits.mplot3d import Axes3D #import matplotlib import matplotlib.pyplot as pl #Create empty list bodyMass and workLevel bodyMass, workLevel = [], [] #Create empty list heatProduction heatProduction = [] # Read data from the file def readFile(filePath): #Open the file in read mode file = open(filePath,"r") #Read each line of the file lines = file.readlines() #Close the file file.close() #For each line in the list lines for l in lines: # Add to list BodyMass bodyMass.append(float(l.strip().split()[0])) #Add to list WorkLevel workLevel.append(float(l.strip().split()[1])) # Add to list HeatProduction heatProduction.append(float(l.strip().split()[2])) # Return array return n.array([bodyMass, workLevel]).T, heatProduction

# Plot def plotFigures(Number, elevation, azi, clf,c): #Initialize figure figur = pl.figure(Number, figsize=(4, 3)) pl.clf() # 3D axes axe = Axes3D(figur, elev=elevation, azim=azi) # Scatter plot axe.scatter(bodyMass, workLevel, heatProduction, c='k', marker='+') # Plot X in a range X = n.arange(55, 85, 0.5) # Ploy Y in a range Y = n.arange(90, 180, 0.5) # Create a mesh grid with X, Y X, Y = n.meshgrid(X, Y) # Calculation for third axes Z = c[0] + c[1]*X + c[2]*Y #Plot X,Y,Z axe.plot_surface(X, Y, Z,alpha=.5, antialiased=True,rstride=200, cstride=100, cmap=pl.cm.coolwarm) # Set X label axe.set_xlabel('BODYMASS', color='b') # Set Y label axe.set_ylabel('WORKLEVEL', color='b') # Set Z label axe.set_zlabel('HEATPRODUCTION', color='b') # Set tick labels for X axis axe.w_xaxis.set_ticklabels([]) # Set tick labels for Y axis axe.w_yaxis.set_ticklabels([]) # Set tick labels for Z axis axe.w_zaxis.set_ticklabels([]) #Set locator for Z axis axe.zaxis.set_major_locator(pl.LinearLocator(10)) # X axis srtring formatter axe.xaxis.set_major_formatter(pl.FormatStrFormatter('%.f')) # Y axis srtring formatter axe.yaxis.set_major_formatter(pl.FormatStrFormatter('%.f')) # Z axis srtring formatter axe.zaxis.set_major_formatter(pl.FormatStrFormatter('%.f')) # Main function if __name__ == '__main__': # Read the file a, b = readFile('in.dat') # Find linear regression linreg = linear_model.LinearRegression() # Fit the model linreg.fit(a, b) # Calculated coefficients print ('Linear Regrssion Coefficients: ',linreg.coef_) # Print independent terms print ('Linear Regression independent term: ',linreg.intercept_) # Create three figures c = [linreg.intercept_,linreg.coef_[0], linreg.coef_[1] ] # Set Elevetaion elev = 44.5 # Set axim azim = -105 # Plot plotFigures(1, elev, azim, lin_reg,c) # Plot title pl.title('Linear regression-1', color='r') # Set Elevetaion elev = -.6 # Set axim azim = 0 # Plot plotFigures(2, elev, azim, lin_reg,c) # Plot title pl.title('Linear regression-2', loc='left', color='r') # Set Elevetaion elev = -.6 # Set axim azim = 90 # Plot plotFigures(3, elev, azim, lin_reg,c) # Plot title pl.title('Linear regression-3', loc='right', color='r') # Show the plot pl.show()

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!