Question: (python) Step (1): Import the pandas, numpy, and seaborn libraries. import pandas as pd import numpy as np import seaborn as sns Step (2): Use
(python)
Step (1): Import the pandas, numpy, and seaborn libraries.
import pandas as pd
import numpy as np
import seaborn as sns
Step (2): Use the code line below to load the "iris" dataset and store it as a data frame.
iris = sns.load_dataset('iris')
Step (3): Drop the "species" column in the iris data frame.
| sepal_length | sepal_width | petal_length | petal_width | |
| 0 | 5.1 | 3.5 | 1.4 | 0.2 |
| 1 | 4.9 | 3 | 1.4 | 0.2 |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 |
| 4 | 5 | 3.6 | 1.4 | 0.2 |
Step (4): Add two more columns to the iris data frame, "sepal_sum" and "petal_sum". The "sepal_sum" is the sum of the values from the "sepal_length" and "sepal_width" columns. On the other hand, The "petal_sum" is the sum of the values from the "petal_length" and "petal_width" columns.
| sepal_length | sepal_width | petal_length | petal_width | sepal_sum | petal_sum | |
| 0 | 5.1 | 3.5 | 1.4 | 0.2 | 8.6 | 1.6 |
| 1 | 4.9 | 3 | 1.4 | 0.2 | 7.9 | 1.6 |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 | 7.9 | 1.5 |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 | 7.7 | 1.7 |
| 4 | 5 | 3.6 | 1.4 | 0.2 | 8.6 | 1.6 |
Step (5): Create a new data frame with the summary stats for the iris dataset. For this summary, compute each column's mean, standard deviation, and minimum and maximum values.
Note: Decide the final layout for the data frame. Use as a reference the below example.
| mean | std | min | max | |
| sepal_length | 5.843333 | 0.825301 | 4.3 | 7.9 |
| sepal_width | 3.057333 | 0.434411 | 2 | 4.4 |
| sepal_sum | 8.900667 | 0.886303 | 6.8 | 11.7 |
| petal_length | 3.758 | 1.759404 | 1 | 6.9 |
| petal_width | 1.199333 | 0.759693 | 0.1 | 2.5 |
| petal_sum | 4.957333 | 2.499316 | 1.2 | 9.2 |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
