Question: Solve the system of differential equations using the Laplace Transform. { dy 1 = - 0 . 3 1 8 6 0 8 9 2
Solve the system of differential equations using the Laplace Transform. dyyy; dyyy
If relevant, I offer you the following information. Python code used to solve the system of equations using the RungeKutta method of order :
import numpy as np
import matplotlib.pyplot as plt
# Definition of the ODE system
def odesystemt y:
y y y
dyyy
dyyy
return dy dy
# Implementation of the RungeKutta method of order
def rungekuttafunc y t tf h:
tvalues nparanget tf h h n lentvalues yvalues npzerosn leny yvalues y for i in range n: k h nparrayfunctvaluesi yvaluesi k h nparrayfunc tvaluesi h yvaluesi k k h nparrayfunctvaluesi h yvaluesi k k h nparrayfunctvaluesi h yvaluesi k
yvaluesi yvaluesi k k k k
return tvalues, yvalues
# Initial conditions and parameters
y
t
tf
h
# Solving the system of ODEs
t solution rungekuttasystemode, y t tf h
# Displaying the results
pltplott solution: labelyt
pltplott solution: labelyt
pltxlabelTime t
pltylabelSolutions
pltlegend
plttitleSolution of the RungeKutta ODE System of Order
pltshow
Resulting graph image Solucin del Sistema de EDOs con RungeKutta de Orden
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
