Question: This is the matching theory course Please help with the second and thirs tasks 2. In what follows, we will prove the following lemma in

 This is the matching theory coursePlease help with the second andthirs tasks 2. In what follows, we will prove the following lemmain two steps: Lemma 1 A matching ,u. is group stable {fund

This is the matching theory course

Please help with the second and thirs tasks

only {fit is (pairwise) stable. Proof of \"Only if" Direction. Suppose thata matching ,u. is pairwise stable, but also for contradiction that it[u] is not group stable. Then it is blocked by a coalition

2. In what follows, we will prove the following lemma in two steps: Lemma 1 A matching ,u. is group stable {fund only {fit is (pairwise) stable. Proof of \"Only if" Direction. Suppose that a matching ,u. is pairwise stable, but also for contradiction that it [u] is not group stable. Then it is blocked by a coalition A and an outcome u'. a. [15 pts] Show that there exists at least one c E A. h. [15 pts] Show that there exists a students s E 01')_1{c) \\ (1401 (c) and a o E UJ}_1{S) \\{u'}_1[c) such that s >.; or.

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Economics Questions!