Question: ValueError Traceback (most recent call last) Cell In[16], line 4 1 from sklearn.metrics import mean_squared_error 3 # Calculate RMSE ----> 4 rmse = np.sqrt(mean_squared_error(y_test, predictions))

ValueError Traceback (most recent call last) Cell In[16], line 4 1 from sklearn.metrics import mean_squared_error 3 # Calculate RMSE ----> 4 rmse = np.sqrt(mean_squared_error(y_test, predictions)) 5 print(f'RMSE of the model predictions on the test set: {rmse:.2f}') File ~\anaconda3\Lib\site-packages\sklearn\utils\_param_validation.py:211, in validate_params..decorator..wrapper(*args, **kwargs) 205 try: 206 with config_context( 207 skip_parameter_validation=( 208 prefer_skip_nested_validation or global_skip_validation 209 ) 210 ): --> 211 return func(*args, **kwargs) 212 except InvalidParameterError as e: 213 # When the function is just a wrapper around an estimator, we allow 214 # the function to delegate validation to the estimator, but we replace 215 # the name of the estimator by the name of the function in the error 216 # message to avoid confusion. 217 msg = re.sub( 218 r"parameter of \w+ must be", 219 f"parameter of {func.__qualname__} must be", 220 str(e), 221 ) File ~\anaconda3\Lib\site-packages\sklearn\metrics\_regression.py:474, in mean_squared_error(y_true, y_pred, sample_weight, multioutput, squared) 404 @validate_params( 405 { 406 "y_true": ["array-like"], (...) 415 y_true, y_pred, *, sample_weight=None, mult

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!