Question: What do the results below actually mean? https://www.kaggle.com/c/tgs-salt-identification-challenge#evaluation (6400, 101, 101, 1) (800, 101, 101, 1) Stage 1 __________________________________________________________________________________________________ Layer (type) Output Shape Param #
What do the results below actually mean? https://www.kaggle.com/c/tgs-salt-identification-challenge#evaluation
(6400, 101, 101, 1) (800, 101, 101, 1) Stage 1 __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) (None, 101, 101, 1) 0 __________________________________________________________________________________________________ conv2d_1 (Conv2D) (None, 101, 101, 16) 160 input_1[0][0] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor (None, 101, 101, 16) 64 conv2d_1[0][0] __________________________________________________________________________________________________ activation_1 (Activation) (None, 101, 101, 16) 0 batch_normalization_1[0][0] __________________________________________________________________________________________________ conv2d_2 (Conv2D) (None, 101, 101, 16) 2320 activation_1[0][0] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor (None, 101, 101, 16) 64 conv2d_2[0][0] __________________________________________________________________________________________________ activation_2 (Activation) (None, 101, 101, 16) 0 batch_normalization_2[0][0] __________________________________________________________________________________________________ conv2d_3 (Conv2D) (None, 101, 101, 16) 2320 activation_2[0][0] __________________________________________________________________________________________________ add_1 (Add) (None, 101, 101, 16) 0 conv2d_3[0][0] conv2d_1[0][0] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor (None, 101, 101, 16) 64 add_1[0][0] __________________________________________________________________________________________________ activation_3 (Activation) (None, 101, 101, 16) 0 batch_normalization_3[0][0] _______________________________________________________________________________
conv2d_44 (Conv2D) (None, 101, 101, 16) 2320 activation_43[0][0] __________________________________________________________________________________________________ batch_normalization_44 (BatchNo (None, 101, 101, 16) 64 conv2d_44[0][0] __________________________________________________________________________________________________ activation_44 (Activation) (None, 101, 101, 16) 0 batch_normalization_44[0][0] __________________________________________________________________________________________________ conv2d_45 (Conv2D) (None, 101, 101, 16) 2320 activation_44[0][0] __________________________________________________________________________________________________ add_18 (Add) (None, 101, 101, 16) 0 conv2d_45[0][0] add_17[0][0] __________________________________________________________________________________________________ batch_normalization_45 (BatchNo (None, 101, 101, 16) 64 add_18[0][0] __________________________________________________________________________________________________ activation_45 (Activation) (None, 101, 101, 16) 0 batch_normalization_45[0][0] __________________________________________________________________________________________________ conv2d_46 (Conv2D) (None, 101, 101, 1) 17 activation_45[0][0] __________________________________________________________________________________________________ activation_46 (Activation) (None, 101, 101, 1) 0 conv2d_46[0][0] ================================================================================================== Total params: 5,119,857 Trainable params: 5,112,497 Non-trainable params: 7,360 __________________________________________________________________________________________________ Train on 6400 samples, validate on 800 samples Epoch 1/10 - 2307s - loss: 0.3595 - my_iou_metric: 0.3674 - val_loss: 0.6009 - val_my_iou_metric: 0.2154
Epoch 00001: val_my_iou_metric improved from -inf to 0.21537, saving model to Unet_resnet_v1_1.model Epoch 2/10 - 2424s - loss: 0.2766 - my_iou_metric: 0.5058 - val_loss: 0.3745 - val_my_iou_metric: 0.3724
Epoch 00002: val_my_iou_metric improved from 0.21537 to 0.37237, saving model to Unet_resnet_v1_1.model Epoch 3/10 - 2403s - loss: 0.2452 - my_iou_metric: 0.5494 - val_loss: 0.8235 - val_my_iou_metric: 0.3622
Epoch 00003: val_my_iou_metric did not improve from 0.37237 Epoch 4/10 - 2424s - loss: 0.2355 - my_iou_metric: 0.5611 - val_loss: 0.3038 - val_my_iou_metric: 0.4791
Epoch 00004: val_my_iou_metric improved from 0.37237 to 0.47913, saving model to Unet_resnet_v1_1.model Epoch 5/10 - 2436s - loss: 0.2145 - my_iou_metric: 0.5933 - val_loss: 0.2974 - val_my_iou_metric: 0.6087
Epoch 00005: val_my_iou_metric improved from 0.47913 to 0.60875, saving model to Unet_resnet_v1_1.model Epoch 6/10 - 2415s - loss: 0.1941 - my_iou_metric: 0.6188 - val_loss: 0.2150 - val_my_iou_metric: 0.5763
Epoch 00006: val_my_iou_metric did not improve from 0.60875 Epoch 7/10 - 2547s - loss: 0.1929 - my_iou_metric: 0.6248 - val_loss: 0.3102 - val_my_iou_metric: 0.5329
Epoch 00007: val_my_iou_metric did not improve from 0.60875 Epoch 8/10 - 2645s - loss: 0.1891 - my_iou_metric: 0.6360 - val_loss: 0.1830 - val_my_iou_metric: 0.6756
Epoch 00008: val_my_iou_metric improved from 0.60875 to 0.67562, saving model to Unet_resnet_v1_1.model Epoch 9/10 - 2634s - loss: 0.1817 - my_iou_metric: 0.6476 - val_loss: 0.1895 - val_my_iou_metric: 0.6669
Epoch 00009: val_my_iou_metric did not improve from 0.67562 Epoch 10/10 - 2547s - loss: 0.1661 - my_iou_metric: 0.6683 - val_loss: 0.1879 - val_my_iou_metric: 0.6193
Epoch 00010: val_my_iou_metric did not improve from 0.67562 Stage 2 Train on 6400 samples, validate on 800 samples Epoch 1/10 - 2699s - loss: -5.3927e-01 - my_iou_metric: 0.5045 - val_loss: -6.2262e-01 - val_my_iou_metric: 0.6154
Epoch 00001: val_my_iou_metric did not improve from 0.67562 Epoch 2/10 - 2563s - loss: -6.3637e-01 - my_iou_metric: 0.5750 - val_loss: -6.7379e-01 - val_my_iou_metric: 0.6295
Epoch 00002: val_my_iou_metric did not improve from 0.67562 Epoch 3/10 - 2548s - loss: -6.6867e-01 - my_iou_metric: 0.5982 - val_loss: -5.7147e-01 - val_my_iou_metric: 0.5976
Epoch 00003: val_my_iou_metric did not improve from 0.67562 Epoch 4/10 - 2533s - loss: -7.0277e-01 - my_iou_metric: 0.6389 - val_loss: -6.4307e-01 - val_my_iou_metric: 0.6221
Epoch 00004: val_my_iou_metric did not improve from 0.67562 Epoch 5/10 - 2436s - loss: -7.1246e-01 - my_iou_metric: 0.6401 - val_loss: -7.0912e-01 - val_my_iou_metric: 0.5839
Epoch 00005: val_my_iou_metric did not improve from 0.67562 Epoch 6/10 - 2496s - loss: -7.3510e-01 - my_iou_metric: 0.6671 - val_loss: -6.0356e-01 - val_my_iou_metric: 0.6135
Epoch 00006: val_my_iou_metric did not improve from 0.67562 Epoch 7/10 - 2507s - loss: -7.3554e-01 - my_iou_metric: 0.6723 - val_loss: -7.0727e-01 - val_my_iou_metric: 0.6504
Epoch 00007: val_my_iou_metric did not improve from 0.67562 Epoch 8/10 - 2503s - loss: -7.5242e-01 - my_iou_metric: 0.6820 - val_loss: -7.3483e-01 - val_my_iou_metric: 0.7004
Epoch 00008: val_my_iou_metric improved from 0.67562 to 0.70038, saving model to Unet_resnet_v1_1.model Epoch 9/10 - 2483s - loss: -7.5873e-01 - my_iou_metric: 0.6945 - val_loss: -6.6214e-01 - val_my_iou_metric: 0.6593
Epoch 00009: val_my_iou_metric did not improve from 0.70038 Epoch 10/10 - 2492s - loss: -7.6327e-01 - my_iou_metric: 0.7058 - val_loss: -7.2479e-01 - val_my_iou_metric: 0.6996
Epoch 00010: val_my_iou_metric did not improve from 0.70038 Stage 3 Train on 6400 samples, validate on 800 samples Epoch 1/10 - 2527s - loss: 0.1249 - my_iou_metric: 0.5980 - val_loss: 0.3356 - val_my_iou_metric: 0.6039
Epoch 00001: val_my_iou_metric did not improve from 0.70038 Epoch 2/10 - 2593s - loss: -5.3444e-02 - my_iou_metric: 0.6258 - val_loss: -1.0343e-01 - val_my_iou_metric: 0.6231
Epoch 00002: val_my_iou_metric did not improve from 0.70038 Epoch 3/10 - 2534s - loss: -1.2991e-01 - my_iou_metric: 0.6390 - val_loss: -2.4771e-01 - val_my_iou_metric: 0.6951
Epoch 00003: val_my_iou_metric did not improve from 0.70038 Epoch 4/10 - 2141s - loss: -1.7572e-01 - my_iou_metric: 0.6627 - val_loss: -1.1991e-01 - val_my_iou_metric: 0.6806
Epoch 00004: val_my_iou_metric did not improve from 0.70038 Epoch 5/10 - 2137s - loss: -2.3527e-01 - my_iou_metric: 0.6767 - val_loss: -2.2720e-01 - val_my_iou_metric: 0.6901
Epoch 00005: val_my_iou_metric did not improve from 0.70038 Epoch 6/10 - 2130s - loss: -2.4228e-01 - my_iou_metric: 0.6800 - val_loss: -5.1456e-02 - val_my_iou_metric: 0.6451
Epoch 00006: val_my_iou_metric did not improve from 0.70038 Epoch 7/10 - 2137s - loss: -2.6496e-01 - my_iou_metric: 0.6882 - val_loss: -2.1933e-01 - val_my_iou_metric: 0.6926
Epoch 00007: val_my_iou_metric did not improve from 0.70038 Epoch 8/10 - 2139s - loss: -2.8349e-01 - my_iou_metric: 0.6957 - val_loss: -2.6460e-01 - val_my_iou_metric: 0.7121
Epoch 00008: val_my_iou_metric improved from 0.70038 to 0.71212, saving model to Unet_resnet_v1_1.model Epoch 9/10 - 2147s - loss: -3.0860e-01 - my_iou_metric: 0.7040 - val_loss: -3.1754e-01 - val_my_iou_metric: 0.7159
Epoch 00009: val_my_iou_metric improved from 0.71212 to 0.71588, saving model to Unet_resnet_v1_1.model Epoch 10/10 - 2177s - loss: -2.9721e-01 - my_iou_metric: 0.6990 - val_loss: -3.3557e-01 - val_my_iou_metric: 0.7260
Epoch 00010: val_my_iou_metric improved from 0.71588 to 0.72600, saving model to Unet_resnet_v1_1.model Intersection-over-Union values for different thresholds are listed below [0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.133125 0.51525 0.606 0.631 0.637125 0.64075 0.648375 0.65275 0.653625 0.65325 0.655375 0.657875 0.653625 0.653875 0.651375 0.645875] Usedtime = 8.400719404220581 s Total run time = 21.081168919139436 hours
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
