Question: Which statement below is false about the difference between the effective annual rate (EAR) and the annual percentage rate (APR)? EAR would be equal to

 Which statement below is false about the difference between the effective

Which statement below is false about the difference between the effective annual rate (EAR) and the annual percentage rate (APR)? EAR would be equal to APR when the compounding frequency is annual. The APR is a stated rate and is computed as (r* n), where ris the rate per period and n is the number of periods per year. The effective annual rate will not always be higher than the annual percentage rate as long as the account is compounded more than once a year and the interest rate is greater than zero. The EAR considers compounding and is computed as (1 + r)^n - 1, where r is the rate per period and n is the number of periods per year

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Finance Questions!