Question: Rework Problem 13.9 if the source voltage is a pulse of magnitude (mathrm{E}) and duration (tau / 10); that is, (e_{mathrm{G}}(t)=mathrm{E}left[u_{-1}(t)-u_{-1}(t-tau / 10)ight]). (mathrm{Z}_{mathrm{R}}=5 mathrm{Z}_{c})
Rework Problem 13.9 if the source voltage is a pulse of magnitude \(\mathrm{E}\) and duration \(\tau / 10\); that is, \(e_{\mathrm{G}}(t)=\mathrm{E}\left[u_{-1}(t)-u_{-1}(t-\tau / 10)ight]\). \(\mathrm{Z}_{\mathrm{R}}=5 \mathrm{Z}_{c}\) and \(\mathrm{Z}_{\mathrm{G}}=\) \(\mathrm{Z}_{c} / 3\) are the same as in Problem 13.9. Also plot \(v(1 / 3, t)\) versus time \(t\) for \(0 \leq t<6 \tau\).
Problem 13.9
Draw the Bewley lattice diagram for Problem 13.5.
Problem 13.5
Rework Example 13.4 with \(\mathrm{Z}_{\mathrm{R}}=5 \mathrm{Z}_{c}\) and \(\mathrm{Z}_{\mathrm{G}}=\mathrm{Z}_{c} / 3\).
Example 13.4
At the receiving end, \(\mathrm{Z}_{\mathrm{R}}=\mathrm{Z}_{c} / 3\). At the sending end, \(e_{\mathrm{G}}(t)=\mathrm{Eu}_{-1}(t)\) and \(\mathrm{Z}_{\mathrm{G}}=2 \mathrm{Z}_{c}\). Determine and plot the voltage versus time at the center of the line.
Step by Step Solution
3.50 Rating (160 Votes )
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
