Question: Suppose you need to generate a random permutation of the first N integers. For example, {4, 3, 1, 5, 2} and {3, 1, 4, 2,
Suppose you need to generate a random permutation of the first N integers. For example, {4, 3, 1, 5, 2} and {3, 1, 4, 2, 5} are legal permutations, but {5, 4, 1, 2, 1} is not, because one number (1) is duplicated and another (3) is missing. This routine is often used in simulation of algorithms. We assume the existence of a random number generator, r, with method randInt(i, j), that generates integers between i and j with equal probability. Here are three algorithms:
1. Fill the array a from a[0] to a[n-1] as follows: To fill a[i], generate random numbers until you get one that is not already in a[0], a[1], . . . , a[i-1].
2. Same as algorithm (1), but keep an extra array called the used array. When a random number, ran, is first put in the array a, set used[ran] = true. This means that when filling a[i] with a random number, you can test in one step to see whether the random number has been used, instead of the (possibly) i steps in the first algorithm.
3. Fill the array such that a[i] = i + 1. Then
for(i = 1; i < n; i++ )
swapReferences( a[ i ], a[ randInt( 0, i ) ] );
a. Prove that all three algorithms generate only legal permutations and that all permutations are equally likely.
b. Give as accurate (Big-Oh) an analysis as you can of the expected running time of each algorithm.
c. Write (separate) programs to execute each algorithm 10 times, to get a good average. Run program (1) for N = 250, 500, 1,000, 2,000; program (2) for
N = 25,000, 50,000, 100,000, 200,000, 400,000, 800,000; and program (3) for
N = 100,000, 200,000, 400,000, 800,000, 1,600,000, 3,200,000, 6,400,000.
d. Compare your analysis with the actual running times.
e. What is the worst-case running time of each algorithm?
1. Fill the array a from a[0] to a[n-1] as follows: To fill a[i], generate random numbers until you get one that is not already in a[0], a[1], . . . , a[i-1].
2. Same as algorithm (1), but keep an extra array called the used array. When a random number, ran, is first put in the array a, set used[ran] = true. This means that when filling a[i] with a random number, you can test in one step to see whether the random number has been used, instead of the (possibly) i steps in the first algorithm.
3. Fill the array such that a[i] = i + 1. Then
for(i = 1; i < n; i++ )
swapReferences( a[ i ], a[ randInt( 0, i ) ] );
a. Prove that all three algorithms generate only legal permutations and that all permutations are equally likely.
b. Give as accurate (Big-Oh) an analysis as you can of the expected running time of each algorithm.
c. Write (separate) programs to execute each algorithm 10 times, to get a good average. Run program (1) for N = 250, 500, 1,000, 2,000; program (2) for
N = 25,000, 50,000, 100,000, 200,000, 400,000, 800,000; and program (3) for
N = 100,000, 200,000, 400,000, 800,000, 1,600,000, 3,200,000, 6,400,000.
d. Compare your analysis with the actual running times.
e. What is the worst-case running time of each algorithm?
Step by Step Solution
★★★★★
3.38 Rating (182 Votes )
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
a It should be clear that all algorithms generate only legal permutations The first two algorithms have tests to guarantee no duplicates the third alg... View full answer
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
Document Format (1 attachment)
1486-C-S-A(283).docx
120 KBs Word File
