New Semester
Started
Get
50% OFF
Study Help!
--h --m --s
Claim Now
Question Answers
Textbooks
Find textbooks, questions and answers
Oops, something went wrong!
Change your search query and then try again
S
Books
FREE
Study Help
Expert Questions
Accounting
General Management
Mathematics
Finance
Organizational Behaviour
Law
Physics
Operating System
Management Leadership
Sociology
Programming
Marketing
Database
Computer Network
Economics
Textbooks Solutions
Accounting
Managerial Accounting
Management Leadership
Cost Accounting
Statistics
Business Law
Corporate Finance
Finance
Economics
Auditing
Tutors
Online Tutors
Find a Tutor
Hire a Tutor
Become a Tutor
AI Tutor
AI Study Planner
NEW
Sell Books
Search
Search
Sign In
Register
study help
physics
thermodynamics
Fundamentals of Thermodynamics 6th edition Richard E. Sonntag, Claus Borgnakke, Gordon J. Van Wylen - Solutions
An evacuated 100-L rigid tank is connected to a line flowing R-142b gas, chlorodifluoroethane, at 2 MPa, 100°C. The valve is opened, allowing the gas to flow into the tank for a period of time, and then it is closed. Eventually, the tank cools to ambient temperature, 20°C, at which point it
Saturated liquid ethane at 2.44 MPa enters a heat exchanger and is brought to 611 K at constant pressure, after which it enters a reversible adiabatic turbine where it expands to 100 kPa. Find the heat transfer in the heat exchanger, the turbine exit temperature and turbine work.
A control mass of 10 kg butane gas initially at 80°C, 500 kPa, is compressed in a reversible isothermal process to one-fifth of its initial volume. What is the heat transfer in the process?
An un insulated compressor delivers ethylene, C2H4, to a pipe, D = 10 cm, at 10.24 MPa, 94°C and velocity 30 m/s. The ethylene enters the compressor at 6.4 MPa, 20.5°C and the work input required is 300 kJ/kg. Find the mass flow rate, the total heat transfer and entropy generation, assuming the
A distributor of bottled propane, C3H8, needs to bring propane from 350 K, 100 kPa to saturated liquid at 290 K in a steady flow process. If this should be accomplished in a reversible setup given the surroundings at 300 K, find the ratio of the volume flow rates V.in/V.out, the heat transfer and
The environmentally safe refrigerant R-152a is to be evaluated as the working fluid for a heat pump system that will heat a house. It uses an evaporator temperature of –20oC and a condensing temperature of 30oC. Assume all processes are ideal and R-152a has a heat capacity of Cp = 0.996 kJ/kg K.
Rework the previous problem using an evaporator temperature of 0oC. Previous problem A distributor of bottled propane, C3H8, needs to bring propane from 350 K, 100 kPa to saturated liquid at 290 K in a steady flow process. If this should be accomplished in a reversible setup given the surroundings
A 2 kg mixture of 50% argon and 50% nitrogen by mole is in a tank at 2 MPa, 180 K. How large is the volume using a model of (a) Ideal gas and (b) Kays rule with generalized compressibility charts.
A 2 kg mixture of 50% argon and 50% nitrogen by mass is in a tank at 2 MPa, 180 K. How large is the volume using a model of (a) Ideal gas and (b) Van der Waals equation of state with a, b for a mixture?
A 2 kg mixture of 50% argon and 50% nitrogen by mass is in a tank at 2 MPa, 180 K. How large is the volume using a model of (a) Ideal gas and (b) Redlich Kwong equation of state with a, b for a mixture.
Saturated-liquid ethane at T1 = 14°C is throttled into a steady flow mixing chamber at the rate of 0.25 kmol/s. Argon gas at T2 = 25°C, P2 = 800 kPa, enters the chamber at the rate of 0.75 kmol/s. Heat is transferred to the chamber from a heat source at a constant temperature of 150oC at a rate
A modern jet engine operates so that the fuel is sprayed into air at a P, T higher than the fuel critical point. Assume we have a rich mixture of 50% n-octane and 50% air by mole at 500 K and 3.5 MPa near the nozzle exit. Do I need to treat this as a real gas mixture or is an ideal gas assumption
How many kmoles of air are needed to burn 1 kmol of carbon?
Why does combustion contribute to global warming?
Saturated liquid butane enters an insulated constant pressure combustion chamber at 25°C, and x times theoretical oxygen gas enters at the same P and T. The combustion products exit at 3400 K. With complete combustion find x. What is the pressure at the chamber exit? and what is the
A gas mixture of 50% ethane and 50% propane by volume enters a combustion chamber at 350 K, 10 MPa. Determine the enthalpy per kilomole of this mixture relative to the thermochemical base of enthalpy using Kay’s rule.
A mixture of 80% ethane and 20% methane on a mole basis is throttled from 10 MPa, 65°C, to 100 kPa and is fed to a combustion chamber where it undergoes complete combustion with air, which enters at 100 kPa, 600 K. The amount of air is such that the products of combustion exit at 100 kPa, 1200 K.
Liquid hexane enters a combustion chamber at 31°C, 200 kPa, at the rate 1 kmol/s 200% theoretical air enters separately at 500 K, 200 kPa, and the combustion products exit at 1000 K, 200 kPa. The specific heat of ideal gas hexane is Cp = 143 kJ/kmol K. Calculate the rate of irreversibility of the
In Example 14.16, a basic hydrogen–oxygen fuel cell reaction was analyzed at 25°C, 100 kPa. Repeat this calculation, assuming that the fuel cell operates on air at 25°C, 100 kPa, instead of on pure oxygen at this state.
Assume that the basic hydrogen-oxygen fuel cell operates at 600 K instead of 298 K as in example 14.16. Find the change in the Gibbs function and the reversible EMF it can generate.
Consider a methane-oxygen fuel cell in which the reaction at the anode is CH4 + 2H2O → CO2 + 8e- + 8H+ The electrons produced by the reaction flow through the external load, and the positive ions migrate through the electrolyte to the cathode, where the reaction is 8 e- + 8 H+ + 2 O2 → 4
Consider a methane-oxygen fuel cell in which the reaction at the anode is CH4 + 2H2O → CO2 + 8e- + 8H+ The electrons produced by the reaction flow through the external load, and the positive ions migrate through the electrolyte to the cathode, where the reaction is 8 e- + 8 H+ + 2 O2 → 4
Consider the steady combustion of propane at 25°C with air at 400 K. The products exit the combustion chamber at 1200 K. It may be assumed that the combustion efficiency is 90%, and that 95% of the carbon in the propane burns to form carbon dioxide; the remaining 5% forms carbon monoxide.
A gasoline engine is converted to run on propane. Assume the propane enters the engine at 25°C, at the rate 40 kg/h. Only 90% theoretical air enters at 25°C such that 90% of the C burns to form CO2, and 10% of the C burns to form CO. The combustion products also include H2O, H2 and N2, exit the
What is the enthalpy of formation for oxygen as O2? If O? For CO2?
A small air-cooled gasoline engine is tested, and the output is found to be 1.0 kW. The temperature of the products is measured to 600 K. The products are analyzed on a dry volumetric basis, with the result: 11.4% CO2, 2.9% CO, 1.6% O2 and 84.1% N2. The fuel may be considered to be liquid octane.
A gasoline engine uses liquid octane and air, both supplied at P0, T0, in a stoichiometric ratio. The products (complete combustion) flow out of the exhaust valve at 1100 K. Assume that the heat loss carried away by the cooling water, at 100°C, is equal to the work output. Find the efficiency of
Ethene, C2H4, and propane, C3H8, in a 1:1 mole ratio as gases are burned with 120% theoretical air in a gas turbine. Fuel is added at 25°C, 1 MPa and the air comes from the atmosphere, 25°C, 100 kPa through a compressor to 1 MPa and mixed with the fuel. The turbine work is such that the exit
Carbon monoxide, CO, is burned with 150% theoretical air and both gases are supplied at 150 kPa and 600 K. Find the reference enthalpy of reaction and the adiabatic flame temperature.
Consider the gas mixture fed to the combustors in the integrated gasification combined cycle power plant, as described in Problem 14.12. If the adiabatic flame temperature should be limited to 1500 K, what percent theoretical air should be used in the combustors?
A study is to be made using liquid ammonia as the fuel in a gas-turbine engine. Consider the compression and combustion processes of this engine. a. Air enters the compressor at 100 kPa, 25°C, and is compressed to 1600 kPa, where the isentropic compressor efficiency is 87%. Determine the exit
A rigid container is charged with butene, C4H8, and air in a stoichiometric ratio at P0, T0. The charge burns in a short time with no heat transfer to state 2. The products then cool with time to 1200 K, state 3. Find the final pressure, P3, the total heat transfer, 1Q3, and the temperature
The turbine in Problem 14.112 is adiabatic. Is it reversible, irreversible, or impossible?In Problem 14.112Ethene, C2H4, and propane, C3H8, in a 1:1 mole ratio as gases are burned with 120% theoretical air in a gas turbine. Fuel is added at 25°C, 1 MPa and the air comes from the atmosphere, 25°C,
Consider the combustion process described in Problem 14.102. a. Calculate the absolute entropy of the fuel mixture before it is throttled into the combustion chamber. b. Calculate the irreversibility for the overall process.
Natural gas (approximate it as methane) at a ratio of 0.3 kg/s is burned with 250% theoretical air in a combustor at 1 MPa where the reactants are supplied at T0. Steam at 1 MPa, 450°C at a rate of 2.5 kg/s is added to the products before they enter an adiabatic turbine with an exhaust pressure of
How is a fuel enthalpy of combustion connected to its enthalpy of formation?
Consider one cylinder of a spark-ignition, internal-combustion engine. Before the compression stroke, the cylinder is filled with a mixture of air and methane. Assume that 110% theoretical air has been used, that the state before compression is 100 kPa, 25°C. The compression ratio of the engine is
Liquid acetylene, C2H2, is stored in a high-pressure storage tank at ambient temperature, 25°C. The liquid is fed to an insulated combustor/steam boiler at the steady rate of 1 kg/s, along with 140% theoretical oxygen, O2, which enters at 500 K, as shown in Fig. P14.72. The combustion products
The turbine in Problem 14.112 is adiabatic. Is it reversible, irreversible, or impossible? in Problem 14.112 Ethene, C2H4, and propane, C3H8, in a 1:1 mole ratio as gases are burned with 120% theoretical air in a gas turbine. Fuel is added at 25°C, 1 MPa and the air comes from the atmosphere,
What is the higher and lower heating value HHV, LHV of n-Butane?
What is the value of hfg for n-Octane?
Does it make a difference for the enthalpy of combustion whether I burn with pure oxygen or air? What about the adiabatic flame temperature?
What happens to the adiabatic flame temperature if I burn rich or lean?
Is the irreversibility in a combustion process significant? Why is that?
If the A/F ratio is larger than stoichiometric is it more or less reversible?
If I burn 1 kmol of hydrogen H2 with 6 kmol air what is A/F ratio on a mole basis and what is the percent theoretical air?
What makes the fuel cell attractive from a power generating point of view?
Calculate the theoretical air-fuel ratio on a mass and mole basis for the combustion of ethanol, C2H5OH.
A certain fuel oil has the composition C10H22. If this fuel is burned with 150% theoretical air, what is the composition of the products of combustion?
Methane is burned with 200% theoretical air. Find the composition and the dew point of the products.
In a combustion process with decane, C10H22, and air, the dry product mole fractions are 83.61% N2, 4.91% O2, 10.56% CO2 and 0.92% CO. Find the equivalence ratio and the percent theoretical air of the reactants.
Natural gas B from Table 14.2 is burned with 20% excess air. Determine the composition of the products.
A Pennsylvania coal contains 74.2% C, 5.1% H, 6.7% O, (dry basis, mass percent) plus ash and small percentages of N and S. This coal is fed into a gasifier along with oxygen and steam, as shown in Fig. P14.26. The exiting product gas composition is measured on a mole basis to: 39.9% CO, 30.8% H2,
Repeat Problem 14.26 for a certain Utah coal that contains, according to the coal analysis, 68.2% C, 4.8% H, 15.7% O on a mass basis. The exiting product gas contains 30.9% CO, 26.7% H2, 15.9% CO2 and 25.7% H2O on a mole basis.
For complete stoichiometric combustion of gasoline, C7H17, determine the fuel molecular weight, the combustion products, and the mass of carbon dioxide produced per kg of fuel burned
A sample of pine bark has the following ultimate analysis on a dry basis, percent by mass: 5.6% H, 53.4% C, 0.1% S, 0.1% N, 37.9% O and 2.9% ash. This bark will be used as a fuel by burning it with 100% theoretical air in a furnace. Determine the air–fuel ratio on a mass basis.Converting the Bark
Why would I sometimes need A/F on a mole basis? on a mass basis?
Liquid propane is burned with dry air. A volumetric analysis of the products of combustion yields the following volume percent composition on a dry basis: 8.6% CO2, 0.6% CO, 7.2% O2 and 83.6% N2. Determine the percent of theoretical air used in this combustion process.
A fuel, CxHy, is burned with dry air and the product composition is measured on a dry mole basis to be: 9.6% CO2, 7.3% O2 and 83.1% N2. Find the fuel composition (x/y) and the percent theoretical air used.
For the combustion of methane 150% theoretical air is used at 25oC, 100 kPa and relative humidity of 70%. Find the composition and dew point of the products.
Many coals from the western United States have a high moisture content. Consider the following sample of Wyoming coal, for which the ultimate analysis on an as-received basis is, by mass:
Pentane is burned with 120% theoretical air in a constant pressure process at 100 kPa. The products are cooled to ambient temperature, 20°C. How much mass of water is condensed per kilogram of fuel? Repeat the answer, assuming that the air used in the combustion has a relative humidity of 90%.
The coal gasifier in an integrated gasification combined cycle (IGCC) power plant produces a gas mixture with the following volumetric percent composition:
The hot exhaust gas from an internal combustion engine is analyzed and found to have the following percent composition on a volumetric basis at the engine exhaust manifold. 10% CO2, 2% CO, 13% H2O, 3% O2 and 72% N2. This gas is fed to an exhaust gas reactor and mixed with a certain amount of air to
Butane is burned with dry air at 40oC, 100 kPa with AF = 26 on a mass basis. For complete combustion find the equivalence ratio, % theoretical air and the dew point of the products. How much water (kg/kg fuel) is condensed out, if any, when the products are cooled down to ambient temperature?
Methanol, CH3OH, is burned with 200% theoretical air in an engine and the products are brought to 100 kPa, 30°C. How much water is condensed per kilogram of fuel?
The output gas mixture of a certain air–blown coal gasifier has the composition of producer gas as listed in Table 14.2. Consider the combustion of this gas with 120% theoretical air at 100 kPa pressure. Determine the dew point of the products and find how many kilograms of water will be
Why is there no significant difference between the number of moles of reactants versus products in combustion of hydrocarbon fuels with air?
In an engine liquid octane and ethanol, mole ration 9:1, and stoichiometric air are taken in at 298K, 100 kPa. After complete combustion, the products run out of the exhaust system where they are cooled to 10oC. Find the dew point of the products and the mass of water condensed per kilogram of fuel
A rigid vessel initially contains 2 kmol of carbon and 2 kmol of oxygen at 25°C, 200 kPa. Combustion occurs, and the resulting products consist of 1 kmol of carbon dioxide, 1 kmol of carbon monoxide, and excess oxygen at a temperature of 1000 K. Determine the final pressure in the vessel and the
In a test of rocket propellant performance, liquid hydrazine (N2H4) at 100 kPa, 25°C, and oxygen gas at 100 kPa, 25°C, are fed to a combustion chamber in the ratio of 0.5 kg O2/kg N2H4. The heat transfer from the chamber to the surroundings is estimated to be 100 kJ/kg N2H4. Determine the
The combustion of heptane C7H16 takes place in a steady flow burner where fuel and air are added as gases at Po, To. The mixture has 125% theoretical air and the products are going through a heat exchanger where they are cooled to 600 K.Find the heat transfer from the heat exchanger per kmol of
Butane gas and 200% theoretical air, both at 25°C, enter a steady flow combustor. The products of combustion exits at 1000 K. Calculate the heat transfer from the combustor per kmol of butane burned.
One alternative to using petroleum or natural gas as fuels is ethanol (C2H5OH), which is commonly produced from grain by fermentation. Consider a combustion process in which liquid ethanol is burned with 120% theoretical air in a steady flow process. The reactants enter the combustion chamber at
Do the previous problem with the ethanol fuel delivered as a vapor. One alternative to using petroleum or natural gas as fuels is ethanol (C2H5OH), which is commonly produced from grain by fermentation. Consider a combustion process in which liquid ethanol is burned with 120% theoretical air in a
Another alternative to using petroleum or natural gas as fuels is methanol, CH3OH, which can be produced from coal. Both methanol and ethanol have been used in automotive engines. Repeat the previous problem using liquid methanol as the fuel instead of ethanol.
Another alternative fuel to be seriously considered is hydrogen. It can be produced from water by various techniques that are under extensive study. Its biggest problem at the present time are cost, storage, and safety. Repeat Problem 14.45 using hydrogen gas as the fuel instead of ethanol.
In a new high-efficiency furnace, natural gas, assumed to be 90% methane and 10% ethane (by volume) and 110% theoretical air each enter at 25°C, 100 kPa, and the products (assumed to be 100% gaseous) exit the furnace at 40°C, 100 kPa. What is the heat transfer for this process? Compare this to an
For the 110% theoretical air in Eq.14.8 what is the equivalence ratio? Is that mixture rich or lean?
Repeat the previous problem, but take into account the actual phase behavior of the products exiting the furnace.
Pentene, C5H10 is burned with pure oxygen in a steady flow process. The products at one point are brought to 700 K and used in a heat exchanger, where they are cooled to 25°C. Find the specific heat transfer in the heat exchanger.
Methane, CH4, is burned in a steady flow process with two different oxidizers: Case A: Pure oxygen, O2 and case B: A mixture of O2 + x Ar. The reactants are supplied at T0, P0 and the products for both cases should be at 1800 K. Find the required equivalence ratio in case (A) and the amount of
A closed, insulated container is charged with a stoichiometric ratio of oxygen and hydrogen at 25°C and 150 kPa. After combustion, liquid water at 25°C is sprayed in such that the final temperature is 1200 K. What is the final pressure?
Gaseous propane mixes with air, both supplied at 500 K, 0.1 MPa. The mixture goes into a combustion chamber and products of combustion exit at 1300 K, 0.1 MPa. The products analyzed on a dry basis are 11.42% CO2, 0.79% CO, 2.68% O2, and 85.11% N2 on a volume basis. Find the equivalence ratio and
Liquid pentane is burned with dry air and the products are measured on a dry basis as: 10.1% CO2, 0.2% CO, 5.9% O2 remainder N2. Find the enthalpy of formation for the fuel and the actual equivalence ratio.
Phenol has an entry in Table 14.3, but it does not have a corresponding value of the enthalpy of formation in Table A.10. Can you calculate it?
Do problem 14.43 using table 14.3 instead of Table A.10 for the solution.
Wet biomass waste from a food-processing plant is fed to a catalytic reactor, where in a steady flow process it is converted into a low-energy fuel gas suitable for firing the processing plant boilers. The fuel gas has a composition of 50% methane, 45% carbon dioxide, and 5% hydrogen on a
Determine the lower heating value of the gas generated from coal as described in Problem 14.35. Do not include the components removed by the water scrubbers.
Why are products measured on a dry basis?
Do problem 14.45 using table 14.3 instead of Table A.10 for the solution. One alternative to using petroleum or natural gas as fuels is ethanol (C2H5OH), which is commonly produced from grain by fermentation. Consider a combustion process in which liquid ethanol is burned with 120% theoretical air
Propylbenzene, C9H12, is listed in Table 14.3, but not in table A.10. No molecular weight is listed in the book. Find the molecular weight, the enthalpy of formation for the liquid fuel and the enthalpy of evaporation.
Determine the higher heating value of the sample Wyoming coal as specified in Problem 14.33.
Do problem 14.47 using table 14.3 instead of Table A.10 for the solution. Another alternative to using petroleum or natural gas as fuels is methanol, CH3OH, which can be produced from coal. Both methanol and ethanol have been used in automotive engines. Repeat the previous problem using liquid
A burner receives a mixture of two fuels with mass fraction 40% n-butane and 60% methanol, both vapor. The fuel is burned with stoichiometric air. Find the product composition and the lower heating value of this fuel mixture (kJ/kg fuel mix).
Consider natural gas A and natural gas D, both of which are listed in Table 14.2. Calculate the enthalpy of combustion of each gas at 25°C, assuming that the products include vapor water. Repeat the answer for liquid water in the products.
Blast furnace gas in a steel mill is available at 250°C to be burned for the generation of steam. The composition of this gas is, on a volumetric basis, Component CH4 H2 CO CO2 N2 H2O Percent by volume 0.1 2.4 23.3 14.4 56.4 3.4 Find the lower heating value (kJ/m3) of this gas at
Natural gas, we assume methane, is burned with 200% theoretical air and the reactants are supplied as gases at the reference temperature and pressure. The products are flowing through a heat exchanger where they give off energy to some water flowing in at 20oC, 500 kPa and out at 700oC, 500 kPa.
Gasoline, C7H17, is burned in a steady state burner with stoichiometric air at Po, To. The gasoline is flowing as a liquid at To to a carburetor where it is mixed with air to produce a fuel air gas mixture at To. The carburetor takes some heat transfer from the hot products to do the heating. After
In an engine a mixture of liquid octane and ethanol, mole ratio 9:1, and stoichiometric air are taken in at T0, P0. In the engine the enthalpy of combustion is used so that 30% goes out as work, 30% goes out as heat loss and the rest goes out the exhaust. Find the work and heat transfer per
Showing 3900 - 4000
of 7586
First
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Last
Step by Step Answers