Question: For block diagram shown below, (mathrm{C}(s) / mathrm{R}(s)) is given by (a) (frac{mathrm{G}_{1} mathrm{G}_{2} mathrm{G}_{3}}{1+mathrm{H}_{2} mathrm{G}_{2} mathrm{G}_{3}+mathrm{H}_{1} mathrm{G}_{1} mathrm{G}_{2}}) (b) (frac{mathrm{G}_{1} mathrm{G}_{2} mathrm{G}_{3}}{1+mathrm{G}_{1} mathrm{G}_{2} mathrm{G}_{3}
For block diagram shown below, \(\mathrm{C}(s) / \mathrm{R}(s)\) is given by

(a) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{H}_{2} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{H}_{1} \mathrm{G}_{1} \mathrm{G}_{2}}\)
(b) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1} \mathrm{H}_{2}}\)
(c) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2}}\)
(d) \(\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}}{1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1}}\)
R(S) G G H G C(s)
Step by Step Solution
3.27 Rating (165 Votes )
There are 3 Steps involved in it
The block diagram shown represents a control system with feedback loops To find the transfer function Cs Rs we need to apply the block diagram reducti... View full answer
Get step-by-step solutions from verified subject matter experts
