Question: The transfer function of the system shown below is (a) (frac{mathrm{Q}}{mathrm{R}}=frac{mathrm{ABC}}{1+mathrm{ABC}}) (b) (frac{mathrm{Q}}{mathrm{R}}=frac{mathrm{A}+mathrm{B}+mathrm{C}}{1+mathrm{AB}+mathrm{AC}}) (c) (frac{mathrm{Q}}{mathrm{R}}=frac{mathrm{AB}+mathrm{AC}}{mathrm{ABC}}) (d) (frac{mathrm{Q}}{mathrm{R}}=frac{mathrm{AB}+mathrm{AC}}{1+mathrm{AB}+mathrm{AC}}) R- + B Q

The transfer function of the system shown below isR- + B Q


(a) \(\frac{\mathrm{Q}}{\mathrm{R}}=\frac{\mathrm{ABC}}{1+\mathrm{ABC}}\)
(b) \(\frac{\mathrm{Q}}{\mathrm{R}}=\frac{\mathrm{A}+\mathrm{B}+\mathrm{C}}{1+\mathrm{AB}+\mathrm{AC}}\)
(c) \(\frac{\mathrm{Q}}{\mathrm{R}}=\frac{\mathrm{AB}+\mathrm{AC}}{\mathrm{ABC}}\)
(d) \(\frac{\mathrm{Q}}{\mathrm{R}}=\frac{\mathrm{AB}+\mathrm{AC}}{1+\mathrm{AB}+\mathrm{AC}}\)

R- + B Q

Step by Step Solution

3.32 Rating (155 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

The image shows a block diagram of a system with three blocks labeled A B and C whose transfer funct... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Systems Analysis And Design Questions!