Question: Consider the eigenvalue problem [left[[k]-omega^{2}[m] ight] vec{X}=overrightarrow{0}] where [[m]=left[begin{array}{cc}2 & 0 0 & 1end{array} ight] text { and }[k]=left[begin{array}{cc}8 & -4 -4 & 4end{array} ight]]
Consider the eigenvalue problem
\[\left[[k]-\omega^{2}[m]\right] \vec{X}=\overrightarrow{0}\]
where
\[[m]=\left[\begin{array}{cc}2 & 0 \\0 & 1\end{array}\right] \text { and }[k]=\left[\begin{array}{cc}8 & -4 \\-4 & 4\end{array}\right]\]
Find the natural frequencies and mode shapes of the system:
a. by solving the equation
\[\left[[m]^{-1}[k]-\omega^{2}[I]\right] \vec{X}=\overrightarrow{0}\]
b. by solving the equation
\[\left[-\omega^{2}[k]^{-1}[m]+[I]\right] \vec{X}=\overrightarrow{0}\]
c. Compare the two sets of results and give your observations.
Step by Step Solution
3.44 Rating (151 Votes )
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
