Question: Solve Problem 4.82 (using Runge-Kutta method) for the forcing function [F(t)= begin{cases}F_{0} sin frac{pi t}{t_{1}} ; & 0 leq t leq t_{1} 0 ;

Solve Problem 4.82 (using Runge-Kutta method) for the forcing function

\[F(t)= \begin{cases}F_{0} \sin \frac{\pi t}{t_{1}} ; & 0 \leq t \leq t_{1} \\ 0 ; & t \geq t_{1}\end{cases}\]

with \(F_{0}=2000 \mathrm{~N}\) and \(t_{1}=6 \mathrm{~s}\).

Data From Problem 4.82:-

Find the response of a damped single-degree-of-freedom system with the equation of motion \[m \ddot{x}+c \dot{x}+k x=F(t)\]
using Runge-Kutta method. Assume that \(m=5 \mathrm{~kg}, c=200 \mathrm{~N}-\mathrm{s} / \mathrm{m}, k=750 \mathrm{~N} / \mathrm{m}\), and \[F(t)= \begin{cases}\frac{F_{0} t}{t_{1}} ; & 0 \leq t \leq t_{1} \\ F_{0} ; & t \geq t_{1}\end{cases}\]
with \(F_{0}=2000 \mathrm{~N}\) and \(t_{1}=6 \mathrm{~s}\).

Step by Step Solution

3.45 Rating (148 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mechanical Vibration Analysis Questions!