Question: Could someone help me out with identifying the A. Item-Based collaborative filtering pieces of code and the B. User-Based collaborative filtering pieces of code? ---------------------------------------------------------------------------------------------------------------
Could someone help me out with identifying the A. Item-Based collaborative filtering pieces of code and the B. User-Based collaborative filtering pieces of code? --------------------------------------------------------------------------------------------------------------- 1. MeanSquaredDifferenceMetric.java:
@Override
public double getSimilarity(final Profile p1, final Profile p2) {
Set
double sumSquaredDifference = 0.0;
for (Integer id : commonIds) {
double diff = p1.getValue(id) - p2.getValue(id);
sumSquaredDifference += diff * diff;
}
double similarity = 1.0 - (sumSquaredDifference / commonIds.size()) / ((rmax - rmin) * (rmax - rmin));
return similarity;
}
----------------------------------------------------------------------------------------------------------------------------------------
2. thresholdNeighbourhood.java:
public void computeNeighbourhoods(final SimilarityMap
{
for (T id : simMap.getIds())
{
Profile profile = simMap.getSimilarities(id);
Set
for (T neighbourId : neighbourIds)
{
this.add(id, neighbourId);
}
}
}
---------------------------------------------------------------------------------------------------------------------------------------- 3. DeviationFromMeanUserPredictor.java:
public Double getPrediction(final UBCFRatingPredictionAlg alg,
final Integer userId, final Integer itemId)
{
Profile userProfile = alg.getTrainingData().getProfile(userId);
if (userProfile == null)
{
return null;
}
Set
if (commonIds.isEmpty())
{
return null;
}
double sumDeviation = 0.0;
int count = 0;
for (Integer id : commonIds)
{
double deviation = userProfile.getValue(id) - userProfile.getMeanValue();
sumDeviation += deviation;
count++;
}
if (count == 0)
{
return null;
}
double predictedRating = userProfile.getMeanValue() + (sumDeviation / count);
return predictedRating;
} ---------------------------------------------------------------------------------------------------------------------------------------- 4. SimSVD.java
@Override
public void learnItemSimilarity() {
int n = R.getColumnDimension();
// Create a copy of the rating matrix R to use in the SVD algorithm
RealMatrix RCopy = R.copy();
// Subtract the global mean from each rating
double globalMean = DatasetReader.getGlobalMean(R);
for (int i = 0; i < RCopy.getRowDimension(); i++) {
for (int j = 0; j < RCopy.getColumnDimension(); j++) {
double val = RCopy.getEntry(i, j);
if (val > 0) {
RCopy.setEntry(i, j, val - globalMean);
}
}
}
// Perform SVD on the modified rating matrix RCopy
SingularValueDecomposition svd = new SingularValueDecomposition(RCopy);
// Get the left singular vectors (U matrix) and singular values (S matrix)
RealMatrix U = svd.getU();
RealMatrix S = svd.getS();
// Compute the item-item similarity matrix B using the U and S matrices
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double dotProduct = U.getColumnVector(i).dotProduct(U.getColumnVector(j));
double cosineSimilarity = dotProduct / (S.getEntry(i, i) * S.getEntry(j, j));
B[i][j] = cosineSimilarity;
B[j][i] = cosineSimilarity;
}
}
// Regularize the similarity matrix B
for (int i = 0; i < n; i++) {
double diag = B[i][i];
double regularizer = K * mu + (1 - mu) * diag;
for (int j = 0; j < n; j++) {
if (i != j && B[i][j] != 0) {
B[i][j] = (K * B[i][j] + (1 - K) * diag) / regularizer;
}
}
}
} ----------------------------------------------------------------------------------------------------------------------------------------
5. Ease.java @Override
public void learnItemSimilarity() {
int n = R.getColumnDimension();
double[] itemMeans = new double[n];
double[] itemVariances = new double[n];
// Compute the mean and variance of each item's ratings
for (int j = 0; j < n; j++) {
double[] col = R.getColumn(j);
itemMeans[j] = DatasetReader.getMean(col);
itemVariances[j] = DatasetReader.getVariance(col, itemMeans[j]);
}
// Compute the item-item similarity matrix B using the EASE algorithm
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double numerator = 0;
double denominator = 0;
for (int k = 0; k < R.getRowDimension(); k++) {
double rik = R.getEntry(k, i);
double rjk = R.getEntry(k, j);
if (rik > 0 && rjk > 0) {
double diff = rik - rjk;
numerator += diff * diff;
denominator += itemVariances[i] + itemVariances[j];
}
}
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
