Question: Cuthill McKee algorithm Matlab function cluster _ custom _ rcm . m function C = cluster _ custom _ rcm ( A ) % Symmetrize

CuthillMcKee algorithm
Matlab function cluster_custom_rcm.m
function C = cluster_custom_rcm(A)
% Symmetrize adjacency matrix
S = A + A';
% Reverse Cuthill-McKee ordering using your custom method
r = ReverseCuthillMckee(S);
% Get the clusters
C ={r(1)};
for i =2:numel(r)
if any(S(C{end}, r(i)))
C{end}(end+1)= r(i);
else
C{end+1}= r(i);
end
end
Matlab function: ReverseCuthillMckee.m
function R = ReverseCuthillMckee(matrix)
cuthill = CuthillMckee(matrix); % Apply the Cuthill-Mckee algorithm
R = flip(cuthill); % Reverse the order of elements to achieve RCM order
end
Matlab function: CuthillMckee.m
function R = CuthillMckee(matrix)
n = size(matrix,1); % Get the number of rows (or nodes) in the matrix
degrees = sum(matrix,2); % Compute the degrees of nodes (sum of rows)
Q =[]; % Initialize an empty queue
R = zeros(1, n); % Initialize the output array for reordered indices
notVisited = true(1, n); % Boolean array to keep track of unvisited nodes
position =0; % Initialize the position counter
% Loop until all nodes have been visited
while any(notVisited)
i = find(notVisited,1); % Find the first unvisited node
Q(end +1)= i; % Enqueue the first unvisited node
notVisited(i)= false; % Mark it as visited
% Process the queue
while ~isempty(Q)
u = Q(1); % Dequeue the first element of the queue
Q(1)=[]; % Remove the first element from the queue
position = position +1; % Increment position index
R(position)= u; % Store the node in the result array at the current position
adj_nodes = find(matrix(u, :)); % Find all adjacent nodes
[~, idx]= sort(degrees(adj_nodes)); % Sort adjacent nodes by degree
adj_nodes = adj_nodes(idx); % Reorder adjacent nodes by increasing degree
% Check each adjacent node
for v = adj_nodes
if notVisited(v)% If the node has not been visited
Q(end +1)= v; % Enqueue the node
notVisited(v)= false; % Mark it as visited
end
end
end
end
R = R(1:position); % Truncate the result array to the actual size (number of positions filled)
end
Matlab function: spectral_clustering.m
function clusters = spectral_clustering(A, num_clusters)
% Ensure the adjacency matrix is symmetric
A =(A + A')/2;
% Compute the degree matrix
D = diag(sum(A,2));
% Compute the unnormalized Laplacian
L = D - A;
% Make sure the Laplacian is positive semi-definite
L =(L + L')/2;
% Compute the eigenvalues and eigenvectors
[eigVectors, ~]= eigs(L, num_clusters+1,'SA');
% Ignore the first eigenvector (corresponding to the eigenvalue 0)
reducedEigVectors = eigVectors(:,2:num_clusters+1);
% Normalize the eigenvectors row-wise
for i =1:size(reducedEigVectors,1)
reducedEigVectors(i, :) = reducedEigVectors(i, :) / norm(reducedEigVectors(i, :));
end
% Perform custom k-means clustering on the rows of the normalized eigenvectors
clusters = custom_kmeans(reducedEigVectors, num_clusters);
end
Matlab function: custom_eigen_decomp.m
function [eigVectors, eigValues]= custom_eigen_decomp(L, num_eigenvectors)
eigVectors = zeros(size(L,1), num_eigenvectors);
eigValues = zeros(num_eigenvectors, 1);
for i =1:num_eigenvectors
% Initial vector to start the iteration
v = rand(size(L,1),1);
% Power Iteration
for j =1:1000
v = L * v;
v = v / norm(v);
end
eigVectors(:, i)= v;
eigValues(i)=(v'* L * v)/(v'* v);
end
end
Matlab function: custom_kmeans.m
function labels = custom_kmeans(data, k)
% Randomly initialize the centroids from the data points
centroids = data(randperm(size(data,1), k), :);
% Initialize labels
labels = zeros(size(data,1),1);
% Previous labels for checking convergence
prev_labels = labels;
% Maximum number of iterations to prevent infinite loops
max_iters =1000;
for iter =1:max_iters
% Assign data points to the nearest centroid
for i =1:size(data,1)
[~, labels(i)]= min(sum((data(i, :) - centroids).^2,2));
end
% Update centroids based on the mean of assigned data points
for j =1:k
centroids(j, :) = mean(data(labels == j, :),1);
end
% Check for convergence (no change in labels)
if labels == prev_labels
break;
else
prev_labels = labels;
end
end
end
show mathematical calculation how cuthill mckee algorithm and spectral clustering with kmeans clustering can be used to to create clusters in a graph w.r.t the code above
Cuthill McKee algorithm Matlab function cluster _

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!