Question: Cuthill McKee algorithm Matlab function cluster _ custom _ rcm . m function C = cluster _ custom _ rcm ( A ) % Symmetrize
CuthillMcKee algorithm
Matlab function clustercustomrcmm
function C clustercustomrcmA
Symmetrize adjacency matrix
S A A;
Reverse CuthillMcKee ordering using your custom method
r ReverseCuthillMckeeS;
Get the clusters
C r;
for i :numelr
if anySCend ri
Cendend ri;
else
Cend ri;
end
end
Matlab function: ReverseCuthillMckee.m
function R ReverseCuthillMckeematrix
cuthill CuthillMckeematrix; Apply the CuthillMckee algorithm
R flipcuthill; Reverse the order of elements to achieve RCM order
end
Matlab function: CuthillMckee.m
function R CuthillMckeematrix
n sizematrix; Get the number of rows or nodes in the matrix
degrees summatrix; Compute the degrees of nodes sum of rows
Q ; Initialize an empty queue
R zeros n; Initialize the output array for reordered indices
notVisited true n; Boolean array to keep track of unvisited nodes
position ; Initialize the position counter
Loop until all nodes have been visited
while anynotVisited
i findnotVisited; Find the first unvisited node
Qend i; Enqueue the first unvisited node
notVisitedi false; Mark it as visited
Process the queue
while ~isemptyQ
u Q; Dequeue the first element of the queue
Q; Remove the first element from the queue
position position ; Increment position index
Rposition u; Store the node in the result array at the current position
adjnodes findmatrixu :; Find all adjacent nodes
~ idx sortdegreesadjnodes; Sort adjacent nodes by degree
adjnodes adjnodesidx; Reorder adjacent nodes by increasing degree
Check each adjacent node
for v adjnodes
if notVisitedv If the node has not been visited
Qend v; Enqueue the node
notVisitedv false; Mark it as visited
end
end
end
end
R R:position; Truncate the result array to the actual size number of positions filled
end
Matlab function: spectralclustering.m
function clusters spectralclusteringA numclusters
Ensure the adjacency matrix is symmetric
A A A;
Compute the degree matrix
D diagsumA;
Compute the unnormalized Laplacian
L D A;
Make sure the Laplacian is positive semidefinite
L L L;
Compute the eigenvalues and eigenvectors
eigVectors ~ eigsL numclustersSA;
Ignore the first eigenvector corresponding to the eigenvalue
reducedEigVectors eigVectors::numclusters;
Normalize the eigenvectors rowwise
for i :sizereducedEigVectors
reducedEigVectorsi :) reducedEigVectorsi :) normreducedEigVectorsi :;
end
Perform custom kmeans clustering on the rows of the normalized eigenvectors
clusters customkmeansreducedEigVectors numclusters;
end
Matlab function: customeigendecomp.m
function eigVectors eigValues customeigendecompL numeigenvectors
eigVectors zerossizeL numeigenvectors;
eigValues zerosnumeigenvectors, ;
for i :numeigenvectors
Initial vector to start the iteration
v randsizeL;
Power Iteration
for j :
v L v;
v v normv;
end
eigVectors: i v;
eigValuesiv L vv v;
end
end
Matlab function: customkmeans.m
function labels customkmeansdata k
Randomly initialize the centroids from the data points
centroids datarandpermsizedata k :;
Initialize labels
labels zerossizedata;
Previous labels for checking convergence
prevlabels labels;
Maximum number of iterations to prevent infinite loops
maxiters ;
for iter :maxiters
Assign data points to the nearest centroid
for i :sizedata
~ labelsi minsumdatai :) centroids;
end
Update centroids based on the mean of assigned data points
for j :k
centroidsj :) meandatalabels j :;
end
Check for convergence no change in labels
if labels prevlabels
break;
else
prevlabels labels;
end
end
end
show mathematical calculation how cuthill mckee algorithm and spectral clustering with kmeans clustering can be used to to create clusters in a graph wrt the code above
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
