Question: file to google drive: https://drive.google.com/drive/folders/11fc_ahJ1Z2qSU2S78WaL1PKsc8QXbKSQ?usp=sharing Note: Multiple Linear Regression using Python. import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing
file to google drive: https://drive.google.com/drive/folders/11fc_ahJ1Z2qSU2S78WaL1PKsc8QXbKSQ?usp=sharing
Note: Multiple Linear Regression using Python.
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
import statsmodels.formula.api as smf
data= pd.read_csv('Startups_company.csv')
data.head(10)
real_x = data.iloc[:,0:4].values
real_y = data.iloc[:,4].values
le = LabelEncoder()
real_x[:,3] = le.fit_transform(real_x[:,3])
oneHE = ColumnTransformer([("State", OneHotEncoder(), [3])], remainder = 'passthrough')
real_x = oneHE.fit_transform(real_x)
real_x = real_x[:,1:]
training_x,test_x, training_y,test_y = train_test_split(real_x,real_y,test_size=0.2,random_state=0)
MLR = LinearRegression()
MLR.fit(training_x,training_y)
pred_y = MLR.predict(test_x)
pred_y
test_y
MLR.coef_
MLR.intercept_
#y = b0 + b1x1 + b2x2----------+bnxn
real_x = np.append(arr=np.ones((50,1)).astype(int),values=real_x,axis=1)
#X = np.append(arr=np.ones((50,1),dtype=np.int), values = X,axis = 1)
x_opt = real_x[:,[0,1,2,3,4,5]]
reg_OLS = sm.OLS(real_y,x_opt)
reg_OLS.summary()
question: how to fix this problem reg_OLS = sm.OLS(real_y,x_opt) & reg_OLS.summary() this type problem:
TypeError: ufunc 'isfinite' not supported for the input types, and the inputs could not be safely coerced to any supported types according to the casting rule ''safe''
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
