Question: import numpy as np import matplotlib.pyplot as plt # Constants for R 1 3 4 - a w 1 = - 7 . 5 9

import numpy as np
import matplotlib.pyplot as plt
# Constants for R134-a
w1=-7.59884
w2=1.48886
w3=-3.79873
w4=1.81379
# Critical point values
Pc =40.6*1e5 # Convert bar to Pa
Tc =374.2 # Celsius
# Reduced temperature range
Tr_range = np.linspace(0.5,1.5,100)
# Calculate reduced pressure using Wagner's correlation
Pr_predicted = np.exp((w1(1- Tr_range)+ w2(1- Tr_range)**1.5+ w3(1- Tr_range)*3+ w4(1- Tr_range)*6)/ Tr_range)
# Hypothetical data points from Appendix B (replace with actual data)
T_data =[300,320,340,360,380]
P_data =[100000,80000,60000,40000,20000]
# Plotting
plt.figure(figsize=(10,6))
plt.plot(Tc Tr_range, Pc Pr_predicted, label="Wagner's Correlation")
plt.scatter(T_data, P_data, marker='o', color='red', label='Data from Table')
# Set labels and title
plt.xlabel('Temperature (K)')
plt.ylabel('Pressure (Pa)')
plt.title('Comparison of Wagner\'s Correlation with Data from Table for R134-a')
plt.legend()
# Choose the scale that gives the best depiction of the information
plt.xscale('log') # Log scale for temperature
plt.grid(True)
plt.show()

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!