Question: Problem 1: (Gaussian distributed random numbers) a) Run the following template script. Comment each line to see if you understand what the program histogram2.py is

Problem 1: (Gaussian distributed random numbers) a) Run the following template script. Comment each line to see if you understand what the program histogram2.py is doing import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab from random import gauss, randrange, seed from scipy.stats import norm # Generating random sequence of gaussian random numbers mu, sigma = 100, 15 #Generating random sequence N=10000 x=[] for k in range(N): x.append(gauss(mu,sigma)) # the histogram of the data num_bins = 40 n, bins, patches = plt.hist(x, num_bins, normed=1, edgecolor='black', alpha=0.75) # best fit of data (mu_fit, sigma_fit) = norm.fit(x) # add a 'best fit' line y = mlab.normpdf( bins, mu, sigma) # Option bins takes take values num_bin because of the hist() function y = mlab.normpdf( bins, mu_fit, sigma_fit) plt.plot(bins, y, 'r--', lw=2) #plot options and plot plt.xlabel('x') plt.ylabel('p(x)') plt.title(r'Fitting pdf to Histogram: $\mu$=%0.3f, $\sigma$=%0.3f' %(mu_fit, sigma_fit)) plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!