Question: The following information is given below about a project. begin { tabular } { | c | c | c | c | c

The following information is given below about a project.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Activity} & Optimistic Time (weeks) & \begin{tabular}{l}
Most \\
Likely Time (weeks)
\end{tabular} & Pessimistic Time (weeks) & Expected Time (weeks) & Variance & \multirow[t]{2}{*}{Immediate Predecessor(s)}\\
\hline & a & m & b & t & \(\sigma^{2}\) & \\
\hline A & 4 & 7 & 10 & & & --\\
\hline B & 2 & 8 & 20 & & & A \\
\hline C & 8 & 12 & 16 & & & A \\
\hline D & 1 & 2 & 3 & & & B \\
\hline E & 6 & 8 & 22 & & & D, C \\
\hline F & 2 & 3 & 4 & & & C \\
\hline G & 2 & 2 & 2 & & & F \\
\hline H & 6 & 8 & 10 & & & F \\
\hline I & 4 & 8 & 12 & & & E, G, H \\
\hline J & 1 & 2 & 3 & & & I \\
\hline
\end{tabular}
a. Determine the expected activity time \((t)\) and variance \(\left(\sigma^{2}\right)\) for each activity. Draw the network diagram using the expected times and the precedence information in the above table. b. Determine the Earliest Start (ES), Earliest Finish (EF), Latest Start (LS), Latest Finish (LF), and Slack values for each activity, and complete the table below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Activity & \begin{tabular}{c}
Earliest \\
Start
\end{tabular} & \begin{tabular}{c}
Earliest \\
Finish
\end{tabular} & \begin{tabular}{c}
Latest \\
Start
\end{tabular} & \begin{tabular}{c}
Latest \\
Finish
\end{tabular} & Slack \\
\hline A & & & & & \\
\hline B & & & & & \\
\hline C & & & & & \\
\hline D & & & & & \\
\hline E & & & & & \\
\hline F & & & & & \\
\hline G & & & & & \\
\hline H & & & & & \\
\hline I & & & & & \\
\hline J & & & & & \\
\hline
\end{tabular}
c. Determine the critical path for this project. Calculate the expected project duration and standard deviation. Then use the z-score table attached on the next page of this assignment to determine the probability that the project will be completed within 43 weeks. The following information is given below about a project.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Activity} & Optimistic Time (weeks) & \begin{tabular}{l}
Most \\
Likely Time (weeks)
\end{tabular} & Pessimistic Time (weeks) & Expected Time (weeks) & Variance & \multirow[t]{2}{*}{Immediate Predecessor(s)}\\
\hline & a & m & b & t & \(\sigma^{2}\) & \\
\hline A & 4 & 7 & 10 & & & --\\
\hline B & 2 & 8 & 20 & & & A \\
\hline C & 8 & 12 & 16 & & & A \\
\hline D & 1 & 2 & 3 & & & B \\
\hline E & 6 & 8 & 22 & & & D, C \\
\hline F & 2 & 3 & 4 & & & C \\
\hline G & 2 & 2 & 2 & & & F \\
\hline H & 6 & 8 & 10 & & & F \\
\hline I & 4 & 8 & 12 & & & E, G, H \\
\hline J & 1 & 2 & 3 & & & I \\
\hline
\end{tabular}
a. Determine the expected activity time \((t)\) and variance \(\left(\sigma^{2}\right)\) for each activity. Draw the network diagram using the expected times and the precedence information in the above table.
 The following information is given below about a project. \begin{tabular}{|c|c|c|c|c|c|c|} \hline

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related General Management Questions!