Question: Suppose we fit the model $mathbf{y}=mathbf{X}_{1} boldsymbol{beta}_{2}+boldsymbol{varepsilon}$ when the true model is actually given by $mathbf{y}=mathbf{X}_{1} boldsymbol{beta}_{2}+mathbf{X}_{2} boldsymbol{beta}_{2}+boldsymbol{varepsilon}$. For both models, assume $E(boldsymbol{varepsilon})=mathbf{0}$ and $operatorname{Var}(boldsymbol{varepsilon})=sigma^{2}
Suppose we fit the model $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}$ when the true model is actually given by $\mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{2}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}$. For both models, assume $E(\boldsymbol{\varepsilon})=\mathbf{0}$ and $\operatorname{Var}(\boldsymbol{\varepsilon})=\sigma^{2} \mathbf{I}$. Find the expected value and variance of the ordinary least-squares estimate, $\hat{\boldsymbol{\beta}}_{1}$. Under what conditions is this estimate unbiased?
Step by Step Solution
3.42 Rating (149 Votes )
There are 3 Steps involved in it
SOLUTION Okay here are the steps The true model is y X11 X22 The esti... View full answer
Get step-by-step solutions from verified subject matter experts
