The molecular ion region in the mass spectrum of a large molecule, such as a protein, consists

Question:

The molecular ion region in the mass spectrum of a large molecule, such as a protein, consists of a cluster of peaks differing by 1 Da. This pattern occurs because a molecule with many atoms has a high probability of containing one or several atoms of 13C, 15N, 18O, 2H, and 34S. In fact, the probability of finding a molecule with only 12C, 14N, 16O, 1H, and 32S may be so small that the nominal molecular ion is not observed. The electrospray mass spectrum of the rat protein interleukin-8 consists of a series of clusters of peaks arising from intact molecular ions with different charges. One cluster has peaks at m/z 1 961.12, 1 961.35, 1 961.63, 1 961.88, 1 962.12 (tallest peak), 1 962.36, 1 962.60, 1 962.87, 1 963.10, 1 963.34, 1 963.59, 1 963.85, and 1 964.09. These peaks correspond to isotopic ions differing by 1 Da. From the observed peak separation, find the charge of the ions in this cluster. From m/z of the tallest peak, estimate the molecular mass of the protein.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question
Question Posted: