Question: 1) Here is some example code in Python that demonstrates how to simulate the Kalman filter: Convert this python code to matlab code and provide
1) Here is some example code in Python that demonstrates how to simulate the Kalman filter:
Convert this python code to matlab code and provide output:
import numpy as np
import matplotlib.pyplot as plt
# Initialize the state of the system
x = np.array([[0], [0]])
# Initialize the state transition matrix
A = np.array([[1, 1], [0, 1]])
# Initialize the input matrix
B = np.array([[0], [0]])
# Initialize the output matrix
C = np.array([[1, 0]])
# Initialize the process noise covariance
Q = np.array([[0, 0], [0, 0]])
# Initialize the measurement noise covariance
R = np.array([[1]])
# Initialize the state estimate error covariance
P = np.array([[1000, 0], [0, 1000]])
# Initialize the control input
u = np.array([[0]])
# Initialize the measurement data
y = np.array([[0]])
# Initialize the Kalman gain
K = np.array([[0], [0]])
# Initialize the time steps
T = 100
# Initialize the arrays to store the true state and the estimated state
x_true = np.zeros((2, T))
x_est = np.zeros((2, T))
# Iterate over the time steps
for t in range(T):
# Generate the true state of the system
x = A.dot(x) + B.dot(u) + np.random.multivariate_normal([0, 0], Q).reshape((2, 1))
x_true[:, t] = x.reshape((2))
# Generate the measurement data
y = C.dot(x) + np.random.normal(0, np.sqrt(R)).reshape((1, 1))
# Estimate the state of the system using the Kalman filter
x_est[:, t] = A.dot(x_
# Compute the Kalman gain
S = C.dot(P).dot(C.T) + R
K = P.dot(C.T).dot(np.linalg.inv(S))
# Update the state estimate
x = x_est[:, t].reshape((2, 1)) + K.dot(y - C.dot(x_est[:, t].reshape((2, 1))))
x_est[:, t] = x.reshape((2))
# Update the state estimate error covariance
P = (np.eye(2) - K.dot(C)).dot(P)
# Plot the true state and the estimated state
plt.plot(x_true[0, :], label='True state')
plt.plot(x_est[0, :], label='Estimated state')
plt.legend()
plt.show()
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
