New Semester Started
Get
50% OFF
Study Help!
--h --m --s
Claim Now
Question Answers
Textbooks
Find textbooks, questions and answers
Oops, something went wrong!
Change your search query and then try again
S
Books
FREE
Study Help
Expert Questions
Accounting
General Management
Mathematics
Finance
Organizational Behaviour
Law
Physics
Operating System
Management Leadership
Sociology
Programming
Marketing
Database
Computer Network
Economics
Textbooks Solutions
Accounting
Managerial Accounting
Management Leadership
Cost Accounting
Statistics
Business Law
Corporate Finance
Finance
Economics
Auditing
Tutors
Online Tutors
Find a Tutor
Hire a Tutor
Become a Tutor
AI Tutor
AI Study Planner
NEW
Sell Books
Search
Search
Sign In
Register
study help
business
business statistics
Mind On Statistics 4th Edition David D Busch, Jessica M Utts, Robert F Heckard - Solutions
Use the GSS-08 dataset on the companion website. The variable degree indicates the highest educational degree achieved by a respondent.a. Is the degree variable quantitative, categorical, or ordinal? Explain.b. Determine the number and percentage falling into each degree category.c. What percentage
Use the pennstate1 dataset on the companion website for this exercise.a. Draw a histogram of the height variable.b. What is the shape of this histogram? Why do you think it is not a bell shape?c. Draw a boxplot of the height variable.d. Which graph, the histogram or the boxplot, is more informative
Use the cholest dataset on the companion website for this exercise. The dataset contains cholesterol levels for 30 “control” patients and 28 heart attack patients at a medical facility.For the heart attack patients, cholesterol levels were measured 2 days, 4 days, and 14 days after the heart
For this exercise, use the GSS-08 dataset on the companion website. The variable cappun is the respondent’s opinion about the death penalty for persons convicted of murder, and the variable polparty is the respondent’s political party preference (Democrat, Republican, Independent, Other).a. In
Use the pennstate2 dataset on the companion website for this exercise. The variable CDs is the approximate number of music CDs owned by a student.a. Draw a stem-and-leaf plot for the CDs variable.b. Draw a histogram for the CDs variable.c. Draw a dotplot for the CDs variable.d. Describe the shape
Use the pennstate1 dataset on the companion website for this exercise. The data for the variable HrsSleep are responses by n 190 students to the question, “How many hours did you sleep last night?”a. Draw a histogram of the data for the HrsSleep variable.Describe the shape of this histogram,
The data for this exercise are in the GSS-08 dataset on the companion website. The variable gunlaw is whether a respondent favors or opposes stronger gun control laws.a. Determine the percentage of respondents who favor stronger gun control laws and the percentage of respondents who oppose stronger
Use the oldfaithful dataset on the companion website; it gives data for n 299 eruptions of the Old Faithful geyser.a. The variable TimeToNext is the time until the next eruption after the present eruption. Draw a histogram of this variable. Describe the shape of the histogram.b. Draw a boxplot of
Explain why women’s heights are likely to have a bell shape but their ages at marriage do not.
The interquartile range and the standard deviation are two different measures of spread. Which measure do you think is more affected by outliers? Explain.
Refer to Exercise 2.40, which gives a five-number summary of heights for college women. Draw a boxplot displaying the information in this five-number summary.
Exercise 2.63 gave the following weights (in pounds) for nine men on the Cambridge crew team:188.5, 183.0, 194.5, 185.0, 214.0, 203.5, 186.0, 178.5, 109.0 Draw a boxplot of these data.
In each case, specify which of the two variables is the explanatory variable and which is the response variable. If it is ambiguous, explain why.a. Is there a relationship between eye color and whether or not corrective lenses are needed by age 18?b. For women who are HIV-positive when they get
Exercise 2.46 gave the following data values for the number of CDs owned by 24 students in a statistics class(in 1999). (Data source: musiccds dataset on the companion website.)220, 20, 50, 450, 300, 30, 20, 50, 200, 35, 25, 50, 250, 100, 0, 100, 20, 13, 200, 2, 125, 150, 90, 60a. Find the
Individuals are a representative sample of college students.Two variables: Male or female and whether the person dreams in color (yes or no).
Individuals are a representative sample of adults in a large city.Two variables: Ounces of coffee consumed per day and marital status (currently married or not).
Individuals are all mathematics majors at a college.Two variables: Grade point average and hours spent studying last week.
Individuals are all of the kindergarten children in a school district.One variable: Adult(s) with whom the child lives (both parents, mother only, father only, one or both grandparents, other).
For a bell-shaped dataset with a large number of values, approximately what z-score would correspond to a data value equaling each of the following?a. The median.b. The lowest value.c. The highest value.d. The mean.
Refer to Exercise 2.52, in which the ages for the highestpaid 50 CEOs of America’s top 500 companies were given.These data are in the ceodata08 dataset for this book.a. Find the mean and standard deviation for these ages.b. Recall that the range should be equivalent to 4 to 6 standard deviations
For each of the following two sets of data, explain which one is likely to have a larger standard deviation:a. Set 1: Heights of the children in a kindergarten class.Set 2: Heights of all of the children in an elementary school.b. Set 1: Systolic blood pressure for a single individual taken daily
The data for 103 women’s right handspans are shown in Figures 2.7 to 2.9 (pp. 29–30), and a five-number summary is given in Example 2.5 (p. 26).a. Examine Figures 2.7 to 2.9 and comment on whether or not the Empirical Rule should hold.b. The mean and standard deviation for these measurements
a. If a data value has a z-score of 0, the value equals one of the summary measures discussed in this chapter. Which summary measure is that?b. Verify that a data value having a z-score of 1.0 is equal to the mean plus 1 standard deviation.
In each case, specify which of the two variables is the explanatory variable and which is the response variable. If it is ambiguous, explain why.a. Is there a relationship between the amount of beer people drink and their systolic blood pressure?b. Is there a relationship between calories of
Each of the following quotes is taken from an article titled,“Education seems to help in selecting husbands” (Sacramento Bee, December 4, 1998, p. A21), which reported on new data in the Statistical Abstract of the United States. Draw an appropriate graph to represent each situation.a. “The
a. Would the first ladies’ ages at death data in Table 2.5(p. 28) be considered a population of measurements or a sample from some larger population? Explain.b. Find the appropriate standard deviation (sample or population) for the “ages at death” data in Table 2.5(p. 28).
Look around your living space or current surroundings and find a quantitative variable for which you can collect at least 20 observations (examples: monetary amounts of the last 25 bills you received or your last 20 scores on tests and homework assignments). List the data with your response.a.
A sample of n 500 individuals is asked how many hours they typically spend using a computer in a week. The mean response is x 8.3 hours, and the standard deviation is s 7.2 hours. Find values for the interval x ± 2s, and explain why the result is evidence that the distribution of weekly hours
Look around your living space or current surroundings, and find a categorical variable for which there are at least three categories and for which you can collect at least 20 observations (example: color of the shirts in your closet). Collect the data.a. Draw a pie chart for your data.b. Draw a bar
For each of the following datasets, explain whether you would expect the mean or the median of the observations to be higher:a. In a rural farming community, for each household the number of children is measured.b. For all households in a large city, yearly household income is measured.
Reach into your wallet, pocket, or wherever you can find at least ten coins, and sort all of the coins you have by type.a. Count how many of each kind of coin you have (pennies, nickels, and so on, or the equivalent for your country).Draw a pie chart illustrating the distribution of your coins.b.
Can a variable be both of the following types? If so, give an example.a. An explanatory variable and a categorical variable.b. A continuous variable and an ordinal variable.c. A quantitative variable and a response variable.d. A bell-shaped variable and a response variable.
In the same survey for which wives’ heights are given in Example 2.19, husbands’ heights were also recorded. A fivenumber summary of husbands’ heights (mm) follows:a. Construct a boxplot for the husbands’ heights.b. Use the range to approximate the standard deviation for these heights.c.
Specify the type (categorical, ordinal, quantitative) for each of the following variables recorded in a survey of telephone usage in student households:a. Telephone exchange (first three numbers after area code).b. Number of telephones in the household.c. Dollar amount of last month’s phone
For each of the following situations, would you prefer your value to be average, a low outlier, or a high outlier? Explain.a. Number of children you have.b. Your annual salary.c. Gas mileage for your car.d. Crime rate in the city or town where you live.
A question in the 2002 General Social Survey (GSS) conducted by the National Opinion Research Center asked participants how long they spend on e-mail each week. A summary of responses (hours) for n 1881 respondents follows. (The data are in the dataset GSS-02 on the companion website.)
Do Thought Question 2.4 on p. 24.
The data for each of the following variables includes one or more outliers. In each case, identify the outlier(s). Then explain whether or not the Empirical Rule would apply to the remaining data if the outlier(s) were removed from the dataset.a. TV Hours.b. Handspan (females).c. Dad’s Height.
The parts of this exercise concern the variable Ideal Height, which is the respondent’s desired height as reported by n 149 college women.a. Use information given by the applet to explain whether or not the Empirical Rule applies for Ideal Height.b. Assuming the Empirical Rule applies, give
The parts of this exercise concern the variable Alcohol, which is data for number of alcoholic beverages consumed in a typical week as reported by n 167 college students.a. What is the shape of the histogram given for Alcohol?Are there any outliers?b. Refer to part (a). Based on the shape of the
The parts of this exercise concern the variable Dad’s Height, which is data for father’s height as reported by n 167 college students.a. What is the shape of the histogram given for the variable Dad’s Height? Are there any outliers?b. Refer to part (a). Based on the shape of the histogram,
Examine the results given by the applet for each of the eight variables.a. Among the eight variables, which variables are best described by the Empirical Rule, and which are not well described by the Empirical Rule?b. Generally, what is the shape of the histogram for the variables that are well
Remember that a resistant statistic is a numerical summary whose value is not unduly influenced by an outlier of any magnitude. Is the standard deviation a resistant statistic?Justify your answer by giving an example of a small dataset, and then adding a very large outlier and noting how the
Can a categorical variable have a bell-shaped distribution?Explain.
Using a computer or calculator that provides proportions falling below a specified z-score, determine the approximate proportion for each of the following situations. In each case, assume the values are approximately bell-shaped.a. The proportion of SAT scores falling below 450 for a group with a
Exercise 2.101 gave the information that the verbal SAT scores for students admitted to a university had a bellshaped distribution with mean 540 and standard deviation 50.a. What is the verbal SAT score such that only 16% of admitted students had a higher score?b. What is the verbal SAT score such
Exercise 2.99 gave the information that head circumferences of adult males have a bell-shaped distribution with mean 56 cm and standard deviation 2 cm.a. What is the head circumference such that only 2.5% of adult males have a smaller head circumference?b. What is the head circumference such that
Suppose verbal SAT scores for students admitted to a university are bell-shaped with a mean of 540 and a standard deviation of 50.a. Draw a picture of the distribution of these verbal SAT scores, indicating the cutoff points for the middle 68%, 95%, and 99.7% of the scores.b. What is the variance
Construct an example and sketch a histogram for a measurement that you think would be bimodal.
About 75% of the students in a class score between 80 and 100 on a quiz. The other 25% of the students have scores spread out between 35 and 79. Characterize the shape of the distribution of quiz scores. Explain.
◆ Here are the ages, arranged in order, for the 50 highestpaid CEOs on the Fortune 500 list of top companies in the United States (Data source: http://www.forbes.com/lists/2009/12/best-boss-09_CEO-Compensation_ CompTotDisp.html). These data are part of the ceodata08 dataset on the companion
Does a stem-and-leaf plot provide sufficient information to determine whether or not a dataset contains an outlier?Explain.
◆ Case Study 1.1 (p. 2) presented data on the fastest speed that men and women had driven a car, and dotplots were shown for each sex. Data for the men are also in the pennstate1M dataset on the companion website.a. Create a stem-and-leaf plot for the male speeds.b. Create a histogram for the
Annual rainfall for Davis, California, for 1951 to 1997 is given in Table 2.6 in Section 2.5 and in the rainfall dataset on the companion website. A histogram is shown in Figure 2.18 (p. 40).a. Create a stem-and-leaf plot for the rainfall data, rounded(not truncated) to the nearest inch.b. Create a
Cholesterol levels for n 20 individuals follow:196 212 200 242 206 178 184 198 160 182 198 182 222 198 188 166 204 178 164 230a. Draw a histogram of these data. Make the bars cover intervals of cholesterol that are 10 wide beginning at 155 (155 to 165, 165 to 175, and so on).b. Create a
A set of exam scores is as follows:75, 84, 68, 95, 87, 93, 56, 87, 83, 82, 80, 62, 91, 84, 75a. Draw a stem-and-leaf plot of the scores.b. Draw a dotplot of the scores.
About how many music CDs do you own? Responses to this question for 24 students in a senior-level statistics course in 1999 follow:220, 20, 50, 450, 300, 30, 20, 50, 200, 35, 25, 50, 250, 100, 0, 100, 20, 13, 200, 2, 125, 150, 90, 60 The data are also given in the musiccds dataset on the companion
The following stem-and-leaf plot is for the mean August temperatures (Fahrenheit) in 20 U.S. cities. The “stem” (row label) gives the first digit of a temperature, while the “leaf”gives the second digit (Data source: temperature dataset on the companion website).6 44 6 89 7 01124 7 56667 8
Hand et al. (1994, p. 148) provide data on the number of words in each of 600 randomly selected sentences from the book Shorter History of England by G. K. Chesterton. They summarized the data as follows:a. Create a histogram for the number of words in the 600 randomly selected sentences.b. Provide
The figure for this exercise is a histogram summarizing the responses given by 116 college students to a question asking how much they had slept the previous night (Data source: sleepstudy dataset on the companion website).a. Describe the shape of the dataset. Explain whether it is symmetric or
The figure for this exercise is a histogram summarizing the responses given by 137 college women to a question asking how many ear pierces they have (Data source:pennstate2 dataset on the companion website).
Refer to Exercise 2.40.a. Give a value from the five-number summary that characterizes the location of the data.b. Describe the spread of the data using values from the five-number summary.
This is the same as Exercise 1.2. A five-number summary for the heights in inches of the women who participated in the survey described in Section 2.1 follows:a. What is the median height for these women?b. What is the range of heights, that is, the difference in heights between the shortest and
In an experiment, one female and one male restaurant server drew happy faces on the checks of randomly chosen dining parties. The figure for this exercise is a dotplot comparing tip percentages for the female (n 22 checks) to the tip percentages for the male (n 23 checks).
Refer to the five-number summaries given in Exercise 2.37.a. Using the appropriate summary value, compare the location of the fastest ever driven response for males to the location for females.b. Explain whether the spread is greater for one sex than the other or whether it is about the same.
This is the same as Exercise 1.1. The five-number summaries of the fastest ever driven data given in Case Study 1.1(page 2) were as follows:
Refer to Exercise 2.35.a. Reconstruct the table using the two categorical variables“letter listed first (S or Q)” and “ordering of letter chosen(listed first or second).”b. Draw an appropriate picture to accompany your numerical summary.c. Explain whether you think the variables used in
In the sample survey described in Section 2.1, there were 92 students who responded to “Randomly pick a letter —S or Q.” Of these 92 students, 61 picked S and 31 picked Q.The order of the letter choices was reversed for another 98 students who responded to “Randomly pick a letter —Q or
Refer to Exercise 2.33 concerning feelings about weight.To compare the men and women, draw a bar graph of the percents found in parts (c) and (d). Use Figure 2.4(p. 24) for guidance.
◆ A sample of college students was asked how they felt about their weight. Of the 143 women in the sample who responded, 38 women said that they felt overweight, 99 felt that their weight was about right, and 6 felt that they were underweight. Of the 78 men in the sample, 18 men felt that they
In 2006 the age distribution for mothers in the United States who had a first child that year was as follows (Martin et al., p. 31):Under 20 20–24 25–29 30–34 35 and Over 20.9% 30.6% 24.7% 15.7% 8.1%a. Draw a bar graph to represent the data.b. Draw a pie chart to represent the data.c. Explain
For each of the following situations, which is the explanatory variable and which is the response variable?a. The two variables are whether or not someone smoked and whether or not the person developed Alzheimer’s disease.b. The two variables are whether or not somebody voted in the last election
Refer to Exercise 2.27. Students also were asked what grades they usually get in school. For twelfth-grade students who responded to this question and the question about how often they wear seatbelts when driving, a summary of frequency counts for combinations of responses to the two questions is
In a survey done in 2010, students in a statistics class were asked, “How do you prefer to use your cell phone—to talk or to text?” Of the 106 women who responded, 22 women said to talk and 84 said to text. Of the 83 men who responded, 34 men said to talk and 49 men said to text.a. Summarize
In the 2008 General Social Survey, participants were asked,“Would you say that you are very happy, pretty happy, or not too happy?” The results were that 599 people said very happy, 1100 people said pretty happy, and 316 people said not too happy (Data source: http://sda.berkeley.edu).a. Write
Table 2.1 (p. 21) summarized frequency of seatbelt use while driving for twelfth-grade participants in the 2003 Youth Risk Behavior Surveillance System (YRBSS) survey. In 2001, YRBSS survey students were asked the same question. For the 2001 survey, a summary of responses given by 2530 students in
To answer the following questions, researchers would measure two variables for each individual unit in the study. In each case, specify the two variables, and the variable type for each. Then, specify which is the explanatory variable and which is the response variable.a. For college students, is
To answer the following questions, researchers would measure two variables for each individual unit in the study. In each case, specify the two variables, and the variable type for each. Then, specify which is the explanatory variable and which is the response variable.a. Is the average IQ of
Find an example of a study that uses statistics in a magazine, newspaper, or website. Determine what variables were measured, and, for each variable, determine its type. Which of the questions listed under “Asking the Right Questions” (p. 19)were addressed in this study? Describe the
Give an example of an ordinal variable for which a numerical summary like the average would make sense.
Give an example of an ordinal variable that is likely to be treated as a categorical variable because numerical summaries like the average would not make much sense.
A physiologist records the pulse rates of 30 men and 30 women.a. Specify the two variables measured in this situation.b. For each variable, explain whether it is categorical or quantitative.c. Using the examples under the “Asking the Right Questions” heading in Section 2.2 (p. 19) as a guide,
According to the Associated Press (June 19, 1998), “Smokers are twice as likely as lifetime nonsmokers to develop Alzheimer’s disease and other forms of dementia . . . [according to a study that] followed 6,870 men and women ages 55 and older.” For this situation, specify what variables were
For each of the following situations reported in the news, specify what variable(s) were measured on each individual and whether they are best described as categorical, ordinal, or quantitative.a. A Los Angeles Times survey found that 60% of the 1515 adult Californians polled supported a recent
For each pair of variables, specify which variable is the explanatory variable and which is the response variable in the relationship between them.a. Amount a person walks or runs per day and performance on a test of lung function.b. Feeling about importance of religion and age of respondent.
For each of the following quantitative variables, explain whether the variable is continuous or not.a. Number of classes a student misses in a week.b. Head circumference (in centimeters).c. Time it takes students to walk from their dorm to a classroom.
For each of the following, indicate whether the variable is ordinal or not. If the variable is not ordinal, indicate its variable type.a. Whether or not the person believes in love at first sight.b. Student rating of teacher effectiveness on a 7-point scale where 1 not at all effective and 7
For each pair of variables, specify which variable is the explanatory variable and which is the response variable in the relationship between them.a. Score on the final exam and final course grade in a psychology course.b. Opinion about the death penalty (favor or oppose), and sex (male or female).
For each of the following quantitative variables, explain whether the variable is continuous or not.a. Body weight (in pounds).b. Number of text messages a person sends in a day.c. Number of coins presently in someone’s pockets and/or purse.
For each of the following, indicate whether the variable is ordinal or not. If the variable is not ordinal, indicate its variable type.a. Opinion about a new tax law (favor or oppose).b. Letter grade in a statistics course (A, B, and so on).c. Heights of men (in inches).
For each of the following characteristics of an individual, indicate whether the variable is categorical or quantitative.a. Length of forearm from elbow to wrist (in centimeters).b. Whether or not the person has ever been the victim of a crime.c. Number of music CDs owned.d. Feeling about own
For each of the following variables, indicate whether the variable is categorical or quantitative.a. Importance of religion to respondent (very, somewhat, or not very important).b. Hours of sleep last night.c. Weights of adult women, measured in pounds.d. Favorite color for an automobile.
Read Case Study 1.6 (p. 5) about aspirin and heart attack rates.a. What two variables are measured on each individual in Case Study 1.6?b. Describe the observational units in this study.c. What was the sample size for the study?d. Explain whether you think the researchers treated the observed data
Case Study 1.2 (p. 3) gave the information that the rate of errors made by air traffic controllers in the United States during fiscal year 1998 was 5.5 errors per million flights.Discuss whether this summary value is a population summary (a parameter) or a sample summary (a statistic).
Read Case Study 1.5 (p. 5) about prayer and blood pressure.a. What was the sample size for the observational study conducted by the National Institutes of Health?b. Describe the observational units in this study.c. Describe two variables that the researchers related to each other in Case Study
Case Study 1.1 (p. 2) was about the fastest speeds that students in a statistics class claimed they have ever driven.a. What variables are described in Case Study 1.1?b. What are the observational units in the study?c. Explain whether you think it would be more appropriate to treat the data as
For each of the following statistical summaries, explain whether it is a population parameter or a sample statistic.a. In the 2000 census of the United States, it was determined that the average household size was 2.59 persons per household (http://www.census.gov).b. In an ABC News poll completed
In each situation, explain whether it would be more appropriate to treat the observed dataset as sample data or as population data.a. A historian summarizes the ages at death for all past presidents of the United States.b. A nutritionist wants to determine which of two weightloss programs is more
In each situation, explain whether it would be more appropriate to treat the observed data as a sample from a larger population or as data from the whole population.a. An instructor surveys all the students in her class to determine whether students would prefer a take-home exam or an in-class
Suppose that in a national survey of 620 randomly selected adults, each person is asked how important religion is to him or her (very, fairly, not very), and whether the person favors or opposes stricter regulation of what can be broadcast on network television.a. How many variables are measured in
Showing 2400 - 2500
of 6970
First
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Last
Step by Step Answers